
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

DOPPIO: Breaking the Browser Language Barrier

John Vilk Emery D. Berger
School of Computer Science

University of Massachusetts, Amherst
Amherst, MA 01003

{jvilk,emery}@cs.umass.edu

Abstract
Web browsers have become a de facto universal operating system,
and JavaScript its instruction set. Unfortunately, running other
languages in the browser is not generally possible. Translation to
JavaScript is not enough because browsers are a hostile environment
for other languages. Previous approaches are either non-portable or
require extensive modifications for programs to work in a browser.

This paper presents DOPPIO, a JavaScript-based runtime system
that makes it possible to run unaltered applications written in general-
purpose languages directly inside the browser. DOPPIO provides
a wide range of runtime services, including a file system that
enables local and external (cloud-based) storage, an unmanaged
heap, sockets, blocking I/O, and multiple threads. We demonstrate
DOPPIO’s usefulness with two case studies: we extend Emscripten
with DOPPIO, letting it run an unmodified C++ application in
the browser with full functionality, and present DOPPIOJVM, an
interpreter that runs unmodified JVM programs directly in the
browser. While substantially slower than a native JVM (between
24× and 42× slower on CPU-intensive benchmarks in Google
Chrome), DOPPIOJVM makes it feasible to directly reuse existing,
non compute-intensive code.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors; D.4.1 [Operating Systems]: Process Manage-
ment – Multitasking; D.4.2 [Operating Systems]: Storage Manage-
ment – Secondary Storage; D.4.4 [Operating Systems]: Communi-
cations Management – Network Communication

General Terms Languages, Design

Keywords Web, Browsers, Programming Languages, JVM, Oper-
ating Systems, JavaScript

1. Introduction
Web browsers have become an increasingly attractive platform for
application developers. Browsers make it comparatively easy to
deliver cross-platform applications, because they are effectively
ubiquitous. Practically all computing platforms—from desktops and
tablets to mobile phones—ship with web browsers. Browsers are
also getting faster. Most now incorporate optimizing just-in-time
compilers for JavaScript, and expose features like access to the GPU

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
PLDI ’14, June 09–11 2014, Edinburgh, United Kingdom
Copyright c© 2014 ACM 978-1-4503-2784-8/14/06. . . $15.00
http://dx.doi.org/10.1145/2594291.2594293

through WebGL and high-speed video chat via WebRTC [10, 14].
This combination of features makes it possible for browsers to host
the kind of richly interactive applications that used to be restricted
to native environments.

In effect, web browsers have become a de facto universal comput-
ing platform: its operating system is the browser environment, and
its sole “instruction set” is JavaScript. However, running languages
other than JavaScript in the browser is not generally possible.

There are numerous reasons why browser support for program-
ming languages other than JavaScript would be desirable. JavaScript
is a dynamically-typed, prototype-based language whose design con-
tains numerous pitfalls for programmers. Problems with JavaScript
have led language implementors to design new languages for the
browser that overcome JavaScript’s shortcomings, but these solu-
tions all require that programmers learn a new language. Program-
mers who prefer to program in other paradigms (e.g., functional,
object-oriented) currently must abandon these or build hacks onto
JavaScript to accomodate their needs. There is also a vast body
of well-debugged, existing code written in general-purpose pro-
gramming languages. Making it possible to reuse this code, rather
than requiring that it all be re-written in JavaScript, would speed
application development and reduce the risk of introducing errors.

Translation, interpretation, or compilation of languages to
JavaScript is necessary but not sufficient. Browsers lack many
key abstractions that existing programming languages expect, im-
pose significant limitations, and vary widely in their support for and
compliance with standards:

• Single-threaded Execution: JavaScript is a single-threaded
event-driven programming language with no support for inter-
rupts. Events either execute to completion, or until they are killed
by the browser’s watchdog thread because they took too long to
finish.
• Asynchronous-only APIs: Browsers provide web applications

with a rich set of functionality, but emerging APIs are exclusively
asynchronous. Due to the limitations of JavaScript, it is not
possible to create synchronous APIs from asynchronous APIs.
• Missing OS Services: Browsers do not provide applications

with access to a file system abstraction. Instead, they offer a
panoply of limited persistent storage mechanisms, making it
difficult to manage large amounts of persistent data. Browsers
also lack other OS services such as sockets.
• Browser Diversity: Users access the web from a wide range of

browser platforms, operating systems, and devices. Each combi-
nation may have unique performance characteristics, differing
support for JavaScript and Document Object Model (DOM)
features, and outright bugs. This diversity makes it difficult to
address any of the issues above without excluding a large portion
of the web audience.

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2594291.2594293

D
O

PP
IO

(J
V

M
)

G
W

T

Em
sc

rip
te

n

AS
M

.js

IL
2J

S

W
eS

ch
em

e

Category Feature JVM Java LLVM IR MSIL Racket
OS SERVICES File system (browser-based) (§5.1) 3 *

Unmanaged heap (§5.2) 3 * †
Sockets (§5.3) 3 3

EXECUTION SUPPORT Automatic event segmentation (§4.1) 3 3

Synchronous API support (§4.2) 3 3

Multithreading support (§4.3) 3 3

Works entirely in the browser 3

LANGUAGE SERVICES Exceptions (§6.6) 3 3 3 3 3

Reflection 3

Table 1. Feature comparison of systems that execute existing code inside the browser. The asterisk and dagger indicate limitations that
prevent execution on browsers used by over half of the web population today: “∗” denotes a feature that requires a (non-default) backwards-
compatibility flag in order to work in those browsers, while a “†” indicates that the feature will not work for them [3]. DOPPIO and the
DOPPIOJVM implement all of these features in a cross-platform approach, letting it run unmodified programs in the vast majority of browsers.

Although previous work aims at supporting other languages than
JavaScript in the browser, these all fall short. Conventional program-
ming languages and their standard libraries expect the relatively
rich execution environment that modern operating systems provide.
The fact that browsers lack standard operating systems features like
threads, file systems, and blocking I/O means that these projects can-
not run existing programs without substantial modifications (§2.1).

This paper identifies and describes how to resolve the impedance
mismatch between the browser and the native environment that
conventional programming languages expect. We present DOPPIO,
a runtime system that makes it possible to execute unmodified
applications written in conventional programming languages inside
the browser. Its execution environment overcomes the limitations
of the JavaScript single-threaded event-driven runtime model (§3)
by providing language implementations with emulated threads that
support suspending and resuming execution to enable blocking
I/O and multithreading in the source language (§4). To support
standard library and language features, DOPPIO provides common
operating system abstractions including a Unix-based file system
abstraction (providing local and cloud-based storage), network
sockets, and an unmanaged heap for dynamic memory allocation
(§5). All of this support serves as an abstraction layer over the many
differences between browsers, letting code run unmodified across
Google Chrome, Firefox, Safari, Opera, and Internet Explorer.

We demonstrate the feasibility of using DOPPIO through two
case studies. We present the DOPPIOJVM, a prototype yet robust
implementation of a Java Virtual Machine interpreter on top of
DOPPIO that can run complex unmodified JVM programs in the
browser without plugin support (§6). We show that the combination
of DOPPIO and the DOPPIOJVM makes it possible to run full,
unmodified JVM applications inside a wide range of browsers (§7.1).
While substantially slower than a native JVM (between 24× and
42× slower on CPU-intensive benchmarks in Google Chrome),
DOPPIOJVM provides acceptable performance for non compute-
intensive tasks, and has already been integrated into an educational
website that interactively teaches students how to program in
Java [21]. We also demonstrate DOPPIO’s generality by augmenting
Emscripten [26] with DOPPIO and present a case study of porting a
C++ game to the browser (§7.2).

Finally, based on the insights learned from implementing
DOPPIO and DOPPIOJVM, we propose several extensions to
browsers that would greatly simplify and speed support for ex-
ecuting conventional languages (§8).

Contributions
The contributions of this paper are the following:

1. We identify the execution support and operating system ab-
stractions that conventional programming languages and their
runtime libraries require, yet are not present in browsers.

2. We describe how to emulate these resources in the browser on
top of JavaScript, and implement them in a runtime system called
DOPPIO.

3. As a proof-of-concept, we port the Java Virtual Machine to
the browser using DOPPIO, allowing multiple languages and
unmodified programs written in those languages to function
completely in the browser.

4. We extend the Emscripten system with DOPPIO, making it
possible to run a broader range of C/C++ applications inside the
browser without modification.

5. We propose several unintrusive browser extensions that would
greatly simplify supporting other programming languages inside
the browser.

2. Related Work
While DOPPIO is the first runtime system and DOPPIOJVM the
first language implementation to allow unmodified code written in a
conventional programming language to execute across browsers, pre-
vious projects have (partially) implemented existing languages in the
browser. Table 1 presents an overview of the features implemented
by some well-known projects; only DOPPIO and the DOPPIOJVM
implement all of the features required to run unaltered programs.

2.1 Conventional Languages
One of the most prominent and earliest implementations of conven-
tional languages inside the browser is Google Web Toolkit (GWT),
a source-to-source compiler from Java to JavaScript [11]. The goal
of GWT is to let web developers write AJAX web applications using
a restricted subset of Java. GWT developers can write small wid-
gets and page components in Java which GWT compiles directly to
JavaScript. However, GWT does not support compiling arbitrary
Java programs to JavaScript. Using GWT imposes a number of
limitations, in addition to the usual difficulties of statically com-
piling Java. With GWT, widgets must be coded carefully to avoid
long-running functions that may make the web page unresponsive,

programs can only be single-threaded, and most Java libraries are
unavailable. GWT has its own class library that is modeled after the
APIs available in the web browser. This class library emulates only
a limited subset of the classes available in the Java Class Library, in-
cluding essential Java data structures, interfaces, and exceptions [8].

Mozilla Research’s Emscripten project lets developers com-
pile applications from the LLVM Intermediate Representation to
JavaScript so they can run in the browser [26]. Emscripten primarily
supports C and C++ applications, though in principle it can sup-
port any code compiled into LLVM’s IR. Emscripten emulates a
number of core operating system services such as the heap and
the file system, and provides partial graphics and audio support.
However, long-running applications freeze the webpage because
Emscripten does not automatically convert the program into finite-
duration events to prevent blocking browser events (see Section 3
for details). Emscripten also does not support multithreaded applica-
tions, so each application “thread” must run to termination before
other program code can be executed; yielding to other “threads” is
not possible. As a result, program event handlers for mouse and key-
board events will not fire—that is, the browser will freeze—unless
the application is completely rewritten in an event-driven manner to
conform to the browser environment. Finally, Emscripten does not
emulate synchronous source language functions like the file system
API in terms of the asynchronous APIs available in the browser,
which prevents applications from operating on files or updating the
display with the expected semantics. Alon Zakai, the lead developer
of Emscripten, specifies that “JavaScript main loops must be written
in an asynchronous way: A callback for each frame", and that “if
you do want [synchronous display updates] in a game you port,
you’d need to refactor them to be asynchronous" [25].

Mozilla Research’s ASM.js project provides language imple-
mentations with a stripped-down subset of JavaScript that, when
coupled with explicit browser support, removes garbage collection
overhead and allows the program to be compiled ahead-of-time
(rather than just-in-time) [4]. To accomplish this, ASM.js applica-
tions do not use JavaScript objects at all; instead, they manipulate
binary structs on its emulated unmanaged heap. As it is a subset of
JavaScript, ASM.js applications are still restricted by JavaScript’s
single-threaded event-driven runtime model (see Section 3). Thus,
applications ported to ASM.js face the same runtime-related issues
as those ported to JavaScript.

Fournet et al. describe a verified compiler that compiles an
ML-like language called F* to JavaScript [6]. The project used
the λJS JavaScript semantics to formally verify the correctness
of the compiler’s transformations [12]. However, as this compiler
is for a new ML-like language and not for an existing language,
it cannot be used to compile and run existing programs in the
browser. Furthermore, this compiler does not provide support for
any operating system abstractions.

Microsoft’s IL2JS compiles .NET Common Intermediate Lan-
guage (CIL) into JavaScript [17]. This project can compile arbitrary
.NET programs into JavaScript, but these programs cannot take
advantage of operating system features such as the file system, the
unmanaged heap, or standard input and output, since IL2JS does
not implement any of the native methods in the .NET Base Class
Library (BCL). As with other systems described above, any long-
running programs compiled with IL2JS will freeze the browser,
since IL2JS does not automatically convert programs into a series
of finite-duration events.

Yoo et al. describe WeScheme, a hybrid system that makes
it possible to run Racket code in the browser [24]. WeScheme
comprises a compiler server responsible for compiling Racket
code into JavaScript, and a JavaScript-based runtime system that
copes with many of the drawbacks of the browser environment that
DOPPIO overcomes. WeScheme does not emulate operating system

services such as the file system or the unmanaged heap, and lacks
support for many Racket language features, including reflection and
certain primitive functions.

The Native Client (NaCl), Portable Native Client (PNaCl),
and Xax projects let web sites execute sandboxed native code
in an efficient manner [2, 5, 23]. NaCl and Xax applications are
distributed in machine code form, and are not portable across
architectures; the web page must provide a precompiled version of
the software for each architecture. PNaCl overcomes this limitation
via an architecture-independent bitcode format. However, PNaCl
does not support C++ exception handling, dynamic linking, or
the most commonly used implementation of the standard library –
glibc [9]. All three solutions completely circumvent the JavaScript
engine, and thus require explicit browser support to function. These
systems provide limited interoperability with JavaScript; as a result,
programs running in these systems typically operate as black boxes
on web pages, much like Java applets. Unlike these systems, DOPPIO
can execute unmodified programs in any modern web browser by
taking advantage of its existing JavaScript engine.

By contrast with the systems above, DOPPIO provides a complete
platform that makes it possible to run unaltered applications written
in conventional programming languages across browsers. DOPPIO
ensures that the web page remains responsive regardless of the
length of any computation, supports multithreaded applications,
and implements the full range of required runtime and operating
system abstractions, including synchronous I/O and a file system.
The DOPPIOJVM supports running arbitrary, unmodified JVM
programs, and supports access to common operating system features
through DOPPIO.

2.2 New Languages
Several new languages have been proposed for the browser. Google
has created Dart, a language that can be compiled to JavaScript or
executed on a custom VM [7]. A number of so-called transpilers
like CoffeeScript provide a convenient layer of syntactic sugar
over JavaScript; CoffeeScript’s motto is “it’s just JavaScript” [13].
TypeScript is a typed superset of JavaScript from Microsoft that lets
programmers annotate JavaScript programs with types, classes, and
interfaces [19]. The TypeScript compiler performs type checking
before performing a direct translation into JavaScript. DOPPIO itself
is written in TypeScript.

These languages let developers write web applications using an
alternative syntax to JavaScript, and compile directly to JavaScript
in a straightforward manner. As a result, these languages face many
of the same challenges as JavaScript for application development.

2.3 OS Approaches
In recent years, a number of operating systems have appeared
that use a modified browser as the exclusive platform for appli-
cations. FirefoxOS is a Firefox-based operating system for mobile
devices that only supports JavaScript and HTML based applications.
ChromeOS is a Google Chrome-based operating system that takes
the same approach as FirefoxOS, but adds support for Native Client
applications. Both expose additional APIs to access OS-specific
components; applications tailored to these environments can use
them for additional functionality. As all applications for these plat-
forms must be written in JavaScript or compiled to Native Client,
they either suffer from the execution problems outlined in Section 3,
or are non-portable across browsers.

The Illinois Browser Operating System (IBOS) tightly couples
the browser with the operating system to safely sandbox web
pages from native applications and to enable the development
of new browser security policies [20]. Rather than providing a
path for bringing existing applications to execute in the browser
as JavaScript applications, IBOS lets existing applications run

in a native sandbox that exposes a UNIX compatibility layer. In
other words, applications are effectively virtualized inside a native
environment.

3. Background: Browser Execution Model
This section provides detailed background on the browser envi-
ronment and JavaScript, focusing on their characteristics and id-
iosyncrasies that make it impossible to directly execute applications
written in conventional programming languages inside the browser.
The following sections describe how DOPPIO overcomes these limi-
tations.

3.1 The Execution Model
The JavaScript execution model in the browser is similar to stan-
dard GUI application development: JavaScript programs are single-
threaded and completely event driven. That is, JavaScript programs
execute as a sequence of finite-duration events that block UI inter-
actions. Popular GUI toolkits for other languages, such as Swing,
Windows Forms, and Windows Presentation Foundation (WPF),
operate in a similar fashion; any computation performed in response
to an event blocks all UI repainting and interaction.

Unfortunately, many applications written in conventional lan-
guages do not fit this model; that is, they do not decompose naturally
into finite chunks of computation, or they rely on multiple simultane-
ous threads of execution. Even when an application does decompose
into finite chunks of computation, there is still a problem: the run-
ning time of these finite chunks must be limited depending on the
browser and the performance of the platform running it. Browsers
stop scripts that make it unresponsive to user input for too long (e.g.,
5 seconds) due to long-running events. There are no mechanisms
for saving execution state to the heap or for performing meaningful
stack introspection. As a result, long-running tasks cannot “pause”
themselves for later execution (i.e., block) unless they do not rely
on stack state or if the programmer manually performs “stack rip-
ping” [1] to convert the application into continuation-passing style.
These issues raise significant barriers to bringing existing appli-
cations into the web environment, which typically expect a more
traditional execution environment.

3.2 Asynchronicity
Most input and output functionality in the browser environment can
only be accessed through asynchronous APIs. An asynchronous
function receives a callback function as an argument, which it will
later invoke with the requested information. Due to JavaScript’s
execution model, callback invocation occurs as an event; the event
will not execute until the JavaScript thread has finished processing
all events that occur before it. The JavaScript application cannot
block waiting for the event to return, and it cannot introspect on
waiting events to process an event at an earlier time. The application
must stop executing—that is, complete all processing—in order to
let the JavaScript thread process waiting events.

As a result, it is impossible to emulate a synchronous function
call using an asynchronous function call. Any functionality available
in the browser solely through asynchronous means can never be
emulated through synchronous functions. This limitation severely
restricts the class of applications that can be brought into the web
environment with minimal changes.

As a concrete example of how serious this restriction is, consider
the following C++ application. This example does not map cleanly
into the browser because it relies on synchronous keyboard input,
whereas the browser only exposes asynchronous keyboard events:
#include <iostream >
using namespace std;
int main () {

char name [256];

cout << "Please enter your name: ";
cin.getline (name ,256);
cout << "Your name is " << name << endl;
return 0;

}

To port an application like this to JavaScript, in addition to
changing the requisite library calls, the application would need to
be broken up into separate events that can be assigned to callbacks:

function main() {
var t = document.getElementById(’terminal ’);
t.innerHTML += "Please enter your name: ";
var name = "";
t.onkeypress = function(e) { // Enter key

if (e.charCode === 13) {
t.innerHTML += "
Your name is " + name + "

";
t.onkeypress = null;

} else {
var c = String.fromCharCode(e.charCode);
name += c;
t.innerHTML += c;

}
};

}

This case is reasonably straightforward to port, but this type of
transformation can become unmanageably complex when blocking
is invoked deep within the program. The program must then some-
how postpone execution to free up the JavaScript thread until after
the callback terminates.

Unfortunately, many browser features, including binary file
downloads, are restricted to asynchronous APIs. As a result, it
becomes difficult to port applications into the browser that expect to
use these features synchronously.

3.3 WebWorkers and their Limitations
One apparent solution to this issue is a browser feature known as
WebWorkers. WebWorkers let browser applications offload compu-
tation to a separate thread of execution. Unlike threads in other lan-
guages, WebWorkers do not share any memory with the JavaScript
thread that spawned them. Instead, the only way the JavaScript
thread and WebWorkers can communicate is via an asynchronous
two-way communication channel that allows either thread to a send
a message to the other. These messages are processed using a regis-
tered callback.

WebWorker execution proceeds much like the main JavaScript
thread. However, WebWorkers have no direct access to user input or
to elements on the web page, so event execution does not block user
input or GUI repainting. As a result, WebWorkers are well suited
for long-running tasks.

Unfortunately, WebWorkers do not solve the problems described
above. If a script executing in a WebWorker relies on mid-execution
input, it must receive that information from the main JavaScript
thread through its asynchronous message-passing interface. Web-
Workers also do not enable true shared-memory multithreading in
the browser, as there is no shared state among workers and the main
JavaScript thread.

4. The DOPPIO Execution Environment
As Section 3 explains, it is not possible to perform a direct translation
of arbitrary code into JavaScript for execution in the web browser
because of issues with the event-driven browser execution model and
the semantics of asynchronous JavaScript APIs. The program must
either be extensively modified to deal with the differing semantics,
or it must execute in a different execution environment that emulates
the source language semantics that it expects.

DOPPIO takes the latter approach. In this section, we explain
how the DOPPIO’s entirely JavaScript-based execution environment

Figure 1. The DOPPIO runtime system makes it possible for exist-
ing programs to execute in an unmodified browser via its virtualized
execution environment and operating system abstractions. This dia-
gram displays the various components of DOPPIO at a high level, and
illustrates how language implementations, such as DOPPIOJVM,
rely on them.

automatically segments existing programs into finite-duration events
to prevent them from making the browser unresponsive to user
input. We next describe how we use this mechanism both to emulate
synchronous APIs in the source language in terms of asynchronous
JavaScript APIs, and to implement multithreading.

4.1 Automatic Event Segmentation
To cope with the browser’s execution model, DOPPIO must break
up the execution of existing programs into finite-duration events.
To perform this task, DOPPIO’s execution environment contains
a mechanism called suspend-and-resume that allows an executing
program to suspend itself to the heap to be resumed later. With
this mechanism, a program executing in this environment can
periodically suspend itself to let other events in the browser event
queue like user input execute before it resumes.

Because this mechanism is not natively available in JavaScript,
languages implemented using DOPPIO must satisfy two properties:

The call stack must be explicitly stored in JavaScript objects.
JavaScript lacks comprehensive introspection APIs and has no
mechanism for saving stack state. As a result, programs executing
in DOPPIO can only reliably use the JavaScript stack for transient
state that will not be needed for program resumption.

The program must be augmented to periodically check if it should
suspend. JavaScript lacks preemption: once an event starts execut-
ing, it will continue executing until it completes or is killed by the
browser. As a result, a language implemented using DOPPIO must
call the execution environment periodically to check if it should
suspend execution to free up the JavaScript thread.

Both of these transformations can be performed automatically
by the language implementation. Section 6.1 describes how DOPPI-
OJVM implements these features for the JVM.

With an explicit call stack representation in hand, the DOPPIO
execution environment can suspend a program for later resumption.

To do so, it first creates an anonymous function—the resumption
callback— that captures the call stack in a closure and that contains
the logic needed to resume the program. It then passes the function
to an asynchronous browser mechanism that will invoke it later.
Various browsers provide different mechanisms that DOPPIO can
exploit for this task; we describe these in Section 4.4. Finally, it
notifies the language implementation that it should halt execution,
with a promise that it will handle resuming it from that point later.

An alternative to this approach is to use ECMAScript 6 genera-
tors, which can be used to effectively “pause" a JavaScript function
mid-execution with the yield statement. This functionality could
be used to implement suspend-and-resume by yielding up the call
stack. ECMAScript 6 is still in the drafting process, and the pro-
posed generator functionality has only recently been implemented in
Firefox and Chrome. As a result, DOPPIO does not use this strategy.

To prevent applications from executing for too long, DOPPIO
uses a simple counter to determine when an application needs to sus-
pend. Each suspend check initiated by the language implementation
decrements the counter by 1. When the counter reaches 0, DOPPIO
determines how long it took for the counter to tick to 0. It then
updates a cumulative moving average representing how often the
program checks whether or not it should suspend. This new value,
along with a preconfigured time slice duration, is then used to set
the new counter value.

4.2 Simulating Blocking with Asynchronous APIs
As stated earlier, it is not possible to emulate a synchronous
JavaScript API in terms of an asynchronous JavaScript API. How-
ever, it is possible to emulate a synchronous API in the source
language in terms of an asynchronous JavaScript API.

To accomplish this, the DOPPIO execution environment provides
a variation on the suspend-and-resume functionality described in
Section 4.1. When it wishes to invoke an asynchronous JavaScript
function, the language implementation must craft a callback function
that encapsulates the logic for migrating the data provided through
the asynchronous API into items that the language can understand.
DOPPIO wraps this callback in a variation of the resumption callback,
and then calls the asynchronous API with the modified callback
function.

When the browser triggers the resumption callback, it resumes
program execution and forwards the data from the asynchronous
call to the callback provided by the language implementation. The
program executing in DOPPIO resumes as if it had just received data
synchronously from a regular function call in its language.

4.3 Multithreading Support
DOPPIO implements multithreading by exploiting the fact that pro-
grams executing in DOPPIO maintain an explicit representation of
their stack. Since JavaScript lacks a mechanism for preempting exe-
cution, multithreading is necessarily cooperative from the JavaScript
point of view. However, as language implementations must volun-
tarily specify valid context switches to DOPPIO, the semantics of
multithreading may be preemptive in the source language (as in the
Java Virtual Machine).

DOPPIO provides language implementations with a mechanism
for switching threads, which is a simple variation of the suspend-and-
resume functionality described in Section 4.1. DOPPIO maintains
a “thread pool” – essentially an array of call stacks. When the
language implementation determines that it is time for a context
switch, DOPPIO saves the call stack of the currently running thread
into this array, and chooses another thread to resume. Language
implementations can provide a scheduling function that determines
which thread to resume. By default, DOPPIO resumes an arbitrary
thread from the thread pool that is marked as ‘ready’.

4.4 Browser Mechanisms for Quick Resumptions
To efficiently implement the suspend-and-resume mechanism de-
scribed in Section 4.1, DOPPIO needs an asynchronous browser API
that is able to insert the resumption callback into the JavaScript
event queue as quickly as possible. However, most browsers lack an
explicit mechanism for this use case. Below, we describe the options
available to DOPPIO; it uses the best choice available in the browser
executing it.

setTimeout is commonly used for delaying a function’s ex-
ecution by a certain number of milliseconds. setTimeout is im-
plemented by delaying the placement of the callback event to the
back of the JavaScript event queue by at least the specified delay.
However, even if the specified delay is 0, its specification dictates a
minimum delay of 4ms, which would result in unacceptable perfor-
mance [22].

sendMessage is a mechanism for sending string-based mes-
sages to other open browser windows or tabs. The JavaScript appli-
cation must register a global event handler to process these messages.
This function is a better option for DOPPIO, as it places a message
event on the back of the JavaScript event queue immediately. In most
browsers, DOPPIO uses this mechanism to implement suspend-and-
resume. Since it uses string-based messages, the DOPPIO execution
environment generates unique string IDs for each resumption call-
back, and maintains a map from IDs to callbacks. When DOPPIO
receives a message from itself through this interface, it calls the
relevant resumption function through the map.

Unfortunately, sendMessage is synchronous in Internet Ex-
plorer 8; messages sent through sendMessage immediately trigger
the message handler. For IE8, DOPPIO uses setTimeout instead.

setImmediate is a mechanism for immediately placing an
event to the back of the JavaScript event queue with no delay.
This mechanism is ideal for DOPPIO, as it has the exact semantics
required to implement suspend-and-resume. As this time, Internet
Explorer 10 is the only browser that implements this API, although
efforts are underway to make it a standard [18].

5. DOPPIO Operating System Services
The web browser lacks a number of core operating system features
that existing programs depend on, such as the file system, access
to unmanaged memory, and network sockets. As a result, these
abstractions must be implemented in terms of the resources available
in the browser so that arbitrary programs can run in the web
environment. This section outlines how DOPPIO implements these
abstractions.

5.1 File System
Many existing programs depend on the presence of a file system to
persist state, but browsers do not provide such a facility. Instead, they
provide a hodgepodge of persistent storage mechanisms with differ-
ent storage formats, restrictions, compatibility across browsers, and
intended use cases. Furthermore, many do not expose synchronous
interfaces, making it impossible to implement a blocking file system
on top of them. Table 2 illustrates the properties and compatibility
of a subset of these mechanisms.

However, by combining the execution environment outlined in
Section 4 with a unified asynchronous file-based storage abstrac-
tion, DOPPIO can provide existing programs with the synchronous
file system semantics they expect, with high compatibility across
browsers. This approach requires three primary components: (1) a
mechanism for manipulating and interpreting binary file data, (2) an
implementation of this unified file system API, and (3) a mechanism
for defining different “file system” backends for each persistent stor-
age solution, including cloud storage. Figure 2 displays an overview

Figure 2. An overview of the DOPPIO file system. Much like
an actual operating system, DOPPIO’s architecture decouples the
frontend interface that programs interact with from the backend
implementation that is responsible for interfacing with a particular
type of persistent storage.

of the DOPPIO file system. We describe these three components
below.

Binary Data in the Browser. Because it is a high-level language,
JavaScript does not offer extensive support for manipulating binary
data. Some browsers contain an API for natively downloading and
manipulating binary data, called “Typed Arrays”. Others lack this
functionality, and can only download binary data as a JavaScript
string. All browsers lack a mechanism for converting between
JavaScript strings and binary data, which is required to make use
of many of the string-based persistent storage mechanisms in the
browser.

To address these deficiencies and inconsistencies, DOPPIO’s file
system implements the Node JS Buffer module in the browser.
Buffer provides applications with a comprehensive mechanism
for manipulating a binary buffer of data. It allows applications to
read and write unsigned integers, signed integers, and floating-point
numbers of various sizes. It also contains a mechanism for reading
and writing binary string data in various formats (ASCII, UTF-8,
UTF-16, UCS-2, BASE64, and HEX).

DOPPIO’s implementation of Buffer can either be backed by
typed arrays if the browser has support for them, or by a regular
JavaScript array of numbers. The string conversion functionality
present in the Buffer class serves double-duty as a centralized
mechanism that any file system backend can use to read from and
write to string-based persistent storage mechanisms. In light of this
fact, our Buffer implementation supports a special “binary string"
format that efficiently packs 2 bytes of data into each JavaScript
UTF-16 character; this functionality is only available in browsers
that do not perform validity checks on JavaScript strings, as a
number of 2 byte sequences are not valid UTF-16 characters. For
other browsers, this string format reverts to storing a single byte per
character.

Unified File System API. To provide language implementations
with a familiar and consistent file system API, DOPPIO emulates
the Node JS file system module, fs, inside the browser. fs is a light
JavaScript wrapper around Unix file system calls, like open and
stat. As a result, most languages’ file system APIs map cleanly
onto its functionality.

DOPPIO also emulates two other Node modules that are closely
related to the file system module: path and process. path contains
useful path string manipulation functions. process encapsulates
miscellaneous environment features; DOPPIO only implements the
functionality required to emulate changing the current working
directory, which programs may rely upon to resolve relative file
paths.

Name Storage Format Synchronous Maximum Size Compatibility[3]
STANDARDIZED Cookies String key/value pairs 3 4KB Over 99%

localStorage String key/value pairs 3 5MB ∼ 90%
IndexedDB Object database User-specified < 50%

DEFUNCT userBehavior String key/value pairs 3 1MB < 40%
Web SQL SQL database User-specified < 25%
FileSystem Binary blobs User-specified < 20%

Table 2. Comparison of persistent storage mechanisms available in the browser. Note that this is only a partial listing – we do not include
popular storage options enabled through native plugins, such as Flash or Silverlight; nor do we list the numerous cloud storage options.
Synchronous describes whether or not the mechanism exposes a synchronous interface in the main JavaScript thread. Compatibility illustrates
the mechanism’s compatibility across the current desktop browser market.

The original Node fs module exposes two variants of its API:
a synchronous and an asynchronous version. Since we are unable
to provide a synchronous JavaScript interface for many persistent
storage mechanisms, our emulated fs module only guarantees the
availability of the asynchronous interface for any given backend.
Language implementations can combine our asynchronous fs
module with the synchronous source language API support outlined
in Section 4.2 to provide existing programs with the synchronous
file system API they normally expect. We describe this process for
the JVM in Section 6.3, where we discuss the implementation of
DOPPIOJVM.

To better take advantage of JavaScript’s strengths, the fs API
deviates from the Unix standard in one important way: DOPPIO’s
file descriptors are actual objects. This approach simplifies the
implementation of separate backends, which we discuss next.

Backend API. A backend for the file system API only needs
to implement nine methods that correspond to standard Unix file
system commands: rename, stat, open, unlink, rmdir, mkdir,
readdir, close, sync. A backend can optionally also support
chmod, chown, utimes, link, symlink, and readlink. The uni-
fied file system API handles standardizing arguments to these meth-
ods, throwing syntax errors when appropriate, and simulating re-
dundant API functions in terms of these core functions; this service
dramatically reduces the amount of logic that each file system needs
to implement.

The DOPPIO file system provides backends with a number of
useful utility classes: an index that any backend can use to cache
directory listings and files, a standard file implementation that loads
the entire file into memory and implements sync-on-close semantics,
and the standard Buffer module for manipulating binary file data.
However, a file system is not required to use any of these utilities;
each has complete freedom to implement the internal data structures
in any way so long as it consistently implements the backend API.

Via the utility classes, a file system needs to implement just nine
methods to provide a new file system backend with full-featured
read/write functionality, NFS-style sync-on-close semantics, and
files that are completely loaded into memory before they can be
operated on. This approach makes it possible to quickly build new
file system backends.

Unlike Unix, DOPPIO uses objects to represent file descriptors.
In addition to being a natural design decision for an object-oriented
language, these objects let separate file system backends share
core file manipulation logic, which determines the syncing and
prefetching strategy for the file system.

Using this backend API, we have implemented backends for five
separate file storage mechanisms, which can be seen in Figure 2.
Two are backed by different browser-local storage mechanisms
(described in Table 2), one provides temporary in-memory storage,
one offers read-only access to files served by the web server, and
one provides access to Dropbox cloud storage.

Mounting File Systems. DOPPIO’s emulated fs module is only
responsible for interacting with a single root file system. However,
a number of systems may want to mount multiple file systems in
a Unix-style directory tree. This would provide programs with a
convenient mechanism for transferring files to different backends, or
for implementing an in-memory temporary file system that emulates
/tmp.

To facilitate this use case, DOPPIO provides a standard Mountable-
FileSystem that handles performing operations across different
file system backends. This file system simply uses the standard
backend API to facilitate these interactions; as a result, it will be
compatible with any new file systems that are implemented in the
future, including cloud storage backends.

5.2 Unmanaged Heap
Programs use the unmanaged heap either to perform unsafe memory
operations (in managed languages), or as the source of dynamically
allocated memory (in unmanaged languages).

DOPPIO emulates the unmanaged heap using a straightforward
first-fit memory allocator that operates on JavaScript arrays. Each
element in the array is a 32-bit signed integer, which represents
32 bits of data. This approach is convenient because JavaScript
only supports bit operations on signed 32-bit integers. When an
application calls an API method to write data to the unmanaged
heap, DOPPIO converts the data into 32-bit chunks and stores it
into the array in little endian format; we chose little endian in
order to be consistent with DOPPIO’s alternative Typed Array heap
implementation, which necessarily uses little endian. When the data
is later retrieved, DOPPIO decodes it back into its original form.

Due to the encoding/decoding process, data stored to and read
from DOPPIO’s heap are actually copied; updates must be kept in
sync according to the language’s semantics.

Typed Arrays. Modern browsers support typed arrays that operate
on a fixed-size ArrayBuffer object. The data in the ArrayBuffer
can be interpreted as an array of various signed, unsigned, and float-
ing point data types by initializing a typed array of the appropriate
type with the ArrayBuffer. As a result, DOPPIO can use typed
arrays to efficiently convert between numeric types.

Note that typed arrays are little endian; this detail is not con-
figurable. DOPPIO uses ArrayBuffer objects for its heap when
available to take advantage of these simple numeric conversions.

5.3 TCP Sockets
For security reasons, browsers do not provide JavaScript applications
with direct access to network sockets. Instead, modern browsers pro-
vide a feature called WebSockets that enable JavaScript applications
to make outgoing full-duplex TCP connections with WebSocket
servers. For security reasons, JavaScript applications cannot accept
incoming WebSocket connections.

Newly-opened WebSockets perform a standardized handshake
that “promote” an HTTP connection to the WebSocket server

to a WebSocket connection. Once the handshake completes, the
JavaScript application can send and receive WebSocket messages,
which are encapsulated in WebSocket data frames.

Existing socket-based servers and clients expect a standard TCP
handshake and the ability to define custom application-layer data
frame formats. As a result, they will not be able to send or receive
WebSocket connections out-of-the box.

Resolving this problem requires a solution for clients running
in the browser that make outgoing socket connections, and servers
running on native hardware that expect incoming socket connections.
DOPPIO resolves the client side of the issue by emulating a Unix
socket API in terms of WebSocket functionality. The freely-available
Websockify program provides a solution for the server end of the
problem; it wraps unmodified programs, and translates incoming
WebSocket connections into normal TCP connections [16]. In
addition, Websockify provides a JavaScript library that proxies
WebSocket connections through a Flash applet in older browsers
that lack WebSocket support. DOPPIO uses this library to supply
programs with socket support in a wide variety of browsers.

6. DOPPIOJVM
To demonstrate DOPPIO’s suitability as a full-featured operating
environment for executing unaltered applications written in conven-
tional programming languages, we built DOPPIOJVM. DOPPIO-
JVM is a robust prototype Java Virtual Machine (JVM) interpreter
that operates entirely in JavaScript. DOPPIOJVM implements all
201 bytecode instructions specified in the second edition of the
Java Virtual Machine Specification [15], supports multithreaded
programs, runs multiple languages that run on top of the JVM, and
implements many of the complex mechanisms and native function-
ality that JVM programs expect. This level of compatibility would
not have been possible without the support provided by the DOPPIO
execution environment and operating system abstractions. This sec-
tion describes a number of DOPPIOJVM’s key features, and how
they rely on support provided by DOPPIO.

6.1 Segmented Execution
Due to the JavaScript execution model, DOPPIOJVM must execute
as finite-duration events to prevent the browser from stopping its
execution. DOPPIOJVM uses DOPPIO’s suspend-and-resume func-
tionality to achieve this. However, it must satisfy the requirements
outlined in Section 4.1 before it can use this mechanism.

DOPPIOJVM contains a straightforward JavaScript representa-
tion of the JVM call stack. The JVM Specification states that each
stack frame contains an operand stack, and an array of local vari-
ables. JavaScript arrays are unbounded, and support push and pop
operations; thus, DOPPIOJVM’s stack frame is a JavaScript object
that contains an array for the operand stack, an array for the local
variables, and a reference to the method that the stack frame belongs
to. The call stack is simply an array of these stack frame objects. A
positive side effect of explicitly representing the call stack in this
manner is that DOPPIOJVM trivially supports the Java Class Library
reflection APIs for stack introspection.

To ensure that it suspends in a timely fashion, DOPPIOJVM
checks at each function call boundary whether it should suspend.
This is not a perfect solution, as it is possible in theory to execute
an extremely long-running loop that makes no method calls. This
concern does not arise in practice; however, it would be possible to
instrument loop back edges to perform the same checks.

6.2 Multithreading
DOPPIOJVM uses DOPPIO’s “thread pool” to emulate multiple JVM
threads. DOPPIOJVM checks for waiting threads at fixed context
switch points, such as JVM monitor checks, atomic operations, and
any other form of lock-checking.

The current implementation does not prevent the starvation that
can occur if a running thread never reaches one of these context
switch points. That said, DOPPIOJVM supports a wide range of
complex multithreaded programs, some of which we evaluate in
Section 7. We plan to switch to a more general mechanism, such as
switching threads each time the JVM invokes the DOPPIO suspend-
and-resume mechanism.

6.3 Native Methods
The Java Class Library exposes JVM interfaces to a wide variety
of native functionality, such as the file system, unsafe memory
operations, and network connections. These methods cannot be
implemented using JVM bytecodes, and are marked as “native”.

DOPPIOJVM implements a wide variety of these native meth-
ods directly in JavaScript. The methods corresponding to the file
system API use the DOPPIO file system, the methods correspond-
ing to unsafe memory operations use the DOPPIO heap, and the
methods corresponding to network connections use DOPPIO sockets.
When a native method needs to use an asynchronous browser API,
DOPPIOJVM uses the suspend-and-resume mechanism in the man-
ner described in Section 4.2 to “pause” execution until the browser
triggers the resumption callback. In this way, the native methods
retain their JVM-level synchronous semantics.

Occasionally, JVM programs define and invoke their own native
methods written in C, C++, or assembly through the Java Native
Interface (JNI). In order to run in DOPPIOJVM, these native
methods will need to be reimplemented in JavaScript and registered
with DOPPIOJVM in the same manner as Java Class Library native
methods.

6.4 Class Loading
When a bytecode instruction references a class for the first time, the
JVM invokes a complex dynamic class loading process to resolve the
reference to a class definition. This process is specified in Chapter 5
of the JVM specification [15].

However, the class loading mechanism described in the speci-
fication assumes the presence of a file system. To resolve a class
reference, the class loader is required to check the folders and JAR
archive files specified on the class path for the class’s representative
class file. In addition, decoding these class file definitions requires
functionality that can convert the binary representations of various
numeric formats and a standard string format into JavaScript num-
bers and strings. Neither of these features are available in standard
browser environments.

The DOPPIOJVM class loader uses the DOPPIO file system and
its Buffer module to appropriately download and parse JVM class
files. In particular, DOPPIOJVM uses a file system backend that is
backed by dynamic file downloads to make the entire Java Class
Library available in the browser. When the class loader opens a class
file for reading, the file system backend launches an asynchronous
download request for the particular file to load it into memory
before passing it to the class loader for further execution. This
design prevents DOPPIOJVM from loading unneeded class files into
memory or browser-local persistent storage before execution.

6.5 Unsafe Memory Operations
The sun.misc.Unsafe API lets the JVM perform unsafe memory
operations via access to an unmanaged heap. The OpenJDK Java
Class Library requires this API, which it uses to determine the under-
lying system’s endianness at startup. DOPPIOJVM uses DOPPIO’s
unmanaged heap implementation to provide this functionality to
JVM programs via the same API.

0X	

20X	

40X	

60X	

80X	

100X	

120X	

140X	

160X	

180X	

200X	

javap	
 javac	
 Rhino	
 Kawa-­‐Scheme	
 geomean	

Ru
n$

m
e	

Re

la
$v

e	

to
	
 H
ot
Sp
ot
	
 In

te
rp
re
te
r	

DoppioJVM	
 Performance	

Chrome	
 Safari	
 Firefox	
 Opera	
 Internet	
 Explorer	
 10	

Figure 3. DOPPIOJVM’s performance on our benchmark applica-
tions relative to the HotSpot JVM interpreter bundled with Java 6.
DOPPIOJVM runs between 24× and 42× slower (geometric mean:
32×) than the HotSpot interpreter in Google Chrome. Note that
javap’s poor performance in Safari is due to a browser bug; we
discuss this further in Section 7.

6.6 Exceptions
The JVM is natively aware of exceptions and exception-handling
logic. However, because DOPPIOJVM uses DOPPIO to execute
as finite-length events, it cannot use JavaScript’s native exception
mechanisms to emulate JVM exceptions.

Instead, DOPPIOJVM emulates JVM exception handling seman-
tics by iterating through its virtual stack representation until it finds a
stack frame with an applicable exception handler, or until it empties
the stack and exits with an error.

6.7 JVM Objects and Arrays
DOPPIOJVM maps JVM objects to JavaScript objects, where each
object contains a reference to its class and a dictionary that contains
all of its fields keyed on their names. JVM arrays are a special
type of JVM object; these are mapped to a JavaScript object that
contains an array of values and a reference to the special array
class that the JVM constructs according to the array’s component
type. DOPPIOJVM takes full advantage of the JavaScript garbage
collector, which automatically collects JVM objects when they fall
out of scope.

6.8 Interoperability with JavaScript
While DOPPIOJVM is capable of executing programs entirely writ-
ten in a JVM language, it can also interoperate with the JavaScript
environment. DOPPIOJVM exposes an eval method that lets JVM
programs execute snippets of JavaScript. This method returns a
JVM String, which contains the return value of the operation co-
erced into string form. DOPPIOJVM also makes it possible for a
JavaScript program to invoke the JVM much as one would invoke
Java on the command line via an API: the programmer specifies
the classpath, main class, and arguments, and optionally, custom
functions to redirect standard input and output.

7. Evaluation
7.1 Case Study 1: DOPPIOJVM
We evaluate DOPPIOJVM’s completeness and performance on a
set of real and unmodified complex JVM programs across a wide
variety of browsers. We compare DOPPIOJVM’s performance to
Oracle’s HotSpot JVM interpreter provided with OpenJDK, which
is able to run JVM programs in the browser using an applet

plugin. While Section 2 describes a variety of systems that bring
existing programming languages into the browser, these systems are
unable to run our benchmarks, so we are unable to compare their
performance to DOPPIOJVM.

Our benchmarks and their respective workloads are as follows:
javap (4KLOC) is the Java disassembler. We run javap on the
compiled class files of javac, which comprises 491 class files. We
use the version of javap and the class files of javac that ship
with OpenJDK 6. javac (44KLOC) is the Java compiler. We run
javac on the 19 source files of javap. We use the version of javac
that comes bundled with OpenJDK 6, and the source of javap
from the same bundle. Rhino (57KLOC) is an implementation
of the JavaScript language on the JVM. We run Rhino 1.7 on the
recursive and binary-trees programs from the SunSpider 0.9.1
benchmark suite. Kawa-Scheme (121KLOC) is an implementation
of the Scheme language on the JVM. We evaluate Kawa-Scheme
1.13 on the nqueens algorithm with input 8.

Our benchmark computer is a Mac Mini running OS X 10.8.4
with a 4-core 2GHz Intel Core i7 processor and 8GB of 1333 MHz
DDR3 RAM. We evaluate DOPPIOJVM in Chrome 28.0, Firefox
22.0, Safari 6.0.5, Opera 12.16, and Internet Explorer 10, with
Internet Explorer 10 running in a Windows 8 virtual machine using
the Parallels 8 software.

DOPPIOJVM is able to successfully execute all of these applica-
tions to completion; we did not need to make any modifications to
these applications. Figure 3 presents execution times across various
browsers versus Oracle’s HotSpot interpreter. DOPPIOJVM achieves
its highest performance on Chrome: compared to the HotSpot inter-
preter, DOPPIOJVM runs between 24× and 42× slower (geometric
mean: 32×). This performance degradation is explained by two
facts: first, DOPPIOJVM is largely untuned; second, it pays the
price for executing on top of JavaScript and inside the browser. By
contrast, the HotSpot interpreter is a highly tuned native executable.

As Figure 3 shows, Chrome performs better than other browsers
across most of the benchmarks we examine. However, it would
be problematic to draw any conclusions about Chrome’s superi-
ority with respect to other browsers, as we used Chrome as the
development platform for DOPPIOJVM. As a result, we may have
inadvertently made design decisions that benefited Chrome over
other browsers.

While running the javap benchmark, we discovered a bug in
Safari that causes significant performance degradation. Safari does
not properly garbage collect typed arrays; they remain in memory
until the browser closes. DOPPIO’s file system implementation
makes heavy use of typed arrays in browsers that support them to
efficiently represent binary data. This detail poses a problem for the
javap benchmark in this browser, as it manipulates a considerable
number of files. As a result, Safari’s memory footprint grows to over
6GB over the course of each javap benchmark run, causing the OS
to page memory to disk and degrade DOPPIOJVM’s performance.
We have reported this issue to Apple.1

Microbenchmarks: To better understand the performance of
DOPPIOJVM in isolation from DOPPIO’s operating system ab-
stractions, we evaluate DOPPIOJVM on two microbenchmarks:
DeltaBlue: a one-way constraint solver, and pidigits: a program that
calculates the digits of pi. We run 100 iterations of the DeltaBlue
benchmark, and we instruct pidigits to calculate the first 200 digits
of pi. These single-threaded benchmarks will spend most of their
execution time inside DOPPIOJVM’s interpreter loop, as they do not
interact with any of DOPPIO’s operating system abstractions. How-
ever, as we discuss in Section 4.1, DOPPIOJVM must periodically
suspend-and-resume to remain responsive in the browser environ-
ment; thus, benchmark runtimes will include time spent suspended.

1 See https://bugs.webkit.org/show_bug.cgi?id=119049

https://bugs.webkit.org/show_bug.cgi?id=119049

0X	

50X	

100X	

150X	

200X	

Chrome	
 Safari	
 Firefox	
 IE10	
 Opera	

Ru
n$

m
e	

Re

la
$v

e	

to
	
 H
ot
Sp
ot
	
 In

te
rp
re
te
r	

DoppioJVM	
 Performance:	
 Microbenchmarks	

DeltaBlue	
 CPU	
 Time	
 DeltaBlue	
 Wall-­‐clock	
 Time	

pidigits	
 CPU	
 Time	
 pidigits	
 Wall-­‐clock	
 Time	

Figure 4. DOPPIOJVM performance on microbenchmarks relative
to the HotSpot interpreter. CPU Time measures the amount of time
that DOPPIOJVM actually spends executing the benchmark, while
Wall-clock Time measures overall benchmark duration.

0.00%	

2.00%	

4.00%	

6.00%	

8.00%	

10.00%	

Chrome	
 Safari	
 IE10	
 Firefox	
 Opera	

Ti
m
e	

sp
en

t	
 s
us
pe

nd
ed

	
 a
s	
 a

	
 p
er
ce
nt
ag
e	

of
	
 ru

n2
m
e	

DoppioJVM:	
 Time	
 Spent	
 Suspended	

During	
 Microbenchmarks	

DeltaBlue	
 pidigits	

Figure 5. DOPPIOJVM suspension time on microbenchmarks
as a percentage of total runtime. As described in Section 4.1,
DOPPIOJVM must periodically suspend to remain responsive in the
browser. DOPPIOJVM is suspended for less than 2% of execution
time in Google Chrome and Safari, suggesting that DOPPIO’s
threading facilities are not a significant performance bottleneck.

For these microbenchmarks, we augment DOPPIO’s suspend-and-
resume mechanism to track the amount of time that DOPPIOJVM
spends in a suspended state. Like in previous benchmarks, we com-
pare against the HotSpot interpreter to measure the performance gap
between a native JVM interpreter and DOPPIOJVM.

Figure 4 displays DOPPIOJVM’s performance across different
browsers relative to the HotSpot interpreter. CPU Time represents
actual execution time, disregarding suspension time, whereas wall-
clock time includes suspension time. Figure 5 displays suspension
duration as a percentage of benchmark runtime. Due to DOPPIO’s
fast suspend-and-resume mechanism (described in Section 4.4),
DOPPIOJVM spends less than 2% of runtime suspended in Google
Chrome and Safari for DeltaBlue, and less than 1% for pidigits. This
result suggests that DOPPIO’s threading facilities are not a significant
performance bottleneck for languages implemented using DOPPIO.

7.2 Case Study 2: DOPPIO and C++
To further demonstrate DOPPIO’s utility and generality, we com-
bined DOPPIO with Emscripten, extending its ability to port C++
applications to the browser. As a case study, we used it to to run
the C++ game Me and My Shadow in the browser. The Emscripten

0X	

1X	

2X	

3X	

4X	

5X	

6X	

7X	

8X	

9X	

10X	

11X	

12X	

13X	

14X	

IE10	
 Chrome	
 Firefox	
 Safari	
 Opera	

Ru
n$

m
e	

Re

la
$v

e	

to
	
 N
od

e	

JS
	

Doppio	
 File	
 System	
 Performance	
 	

Figure 6. DOPPIO file system performance on recorded file system
calls from DOPPIOJVM’s javac benchmark relative to Node JS
running on top of the native OS file system. The DOPPIO file system
has nearly identical performance to the native file system in Internet
Explorer 10, and is only 2.5× slower in Google Chrome.

developers previously ported the core of this game to the web, but
the port was incomplete: because Emscripten does not support syn-
chronous dynamic file loading and does not back files to a persistent
storage mechanism, the Emscripten demo needs to load all of the
games assets into memory prior to execution and does not support
game saving.

We modified Emscripten to use the DOPPIO file system, which
is able to download the static game assets synchronously as the
game requires them, and back the game’s configuration folder to
localStorage. We did not need to modify the game in order to do
this; we took the same source code that the Emscripten developers
used to make their demo, compiled it with our augmented version
of Emscripten, and configured the DOPPIO file system to mount the
game’s resources and the browser’s persistent storage at appropriate
folders in the file system hierarchy. The resulting demo does not
preload any files, and is able to write to the file system to save game
progress and settings.

7.3 DOPPIO File System
We evaluate the DOPPIO file system on recorded file system calls
from DOPPIOJVM’s javac benchmark. This benchmark performs
3185 file system operations, touches 1560 unique files, reads over
10.5 megabytes of data, and writes 97 kilobytes of data back to
disk. Much of this activity is due to the JVM classloader, which
pulls in many individual JVM class files as the program references
them. We compare our performance against Node JS running on
top of the native file system because it implements the same API
as DOPPIO’s file system. The results from this comparison should
indicate how well DOPPIO’s file system compares to native file
system performance on this particular workload.

Figure 6 displays the results of this benchmark. DOPPIO’s file
system performance is only 18% slower than native performance in
Internet Explorer 10, and about 2.5× slower in Google Chrome.

8. Discussion
Based on insights gleaned while implementing DOPPIO and the
DOPPIOJVM, we believe that browsers could add several features
that would make it far easier and more efficient for browsers to
support conventional languages. These features are limited in scope,
are fairly circumscribed in terms of implementation, and we expect
they would have little impact on JavaScript programmers or users,
while making it far easier to run other languages. By contrast,
consider adding multiple threads of execution to JavaScript: while
this would ease porting multithreaded applications, it would likely

lead to shared-memory related concurrency errors inside JavaScript
applications.

Synchronous message-passing API. A synchronous message-
passing API for WebWorkers would allow WebWorkers to subscribe
to and periodically check for events through the main JavaScript
thread without requiring them to yield the JavaScript thread for event
processing. This feature would make it trivial to implement syn-
chronous language functionality in terms of asynchronous browser
functionality, as a WebWorker could use the main JavaScript thread
to perform the asynchronous operation and periodically poll for a
response.

Stack introspection. A sufficiently complete stack introspection
mechanism would allow programs to persist their state on the
JavaScript heap as objects. Language implementations could then
use this feature to implement multithreading and automatic event
segmentation without needing to explicitly store the stack state
themselves.

Numeric support. Direct support for 64-bit integers would enable
languages to efficiently represent a broader range of numeric types
in the browser. The DOPPIOJVM uses a comprehensive software
implementation of 64-bit integers to bring the long data type into
the browser, but it is extremely slow when compared to normal
numeric operations in JavaScript.

9. Conclusion
While web browsers have become ubiquitous and so are an attractive
target for application developers, they support just one programming
language—JavaScript—and offer an idiosyncratic execution envi-
ronment that lacks many of the features that most programs require,
including file systems, blocking I/O, and multiple threads. They also
are incredibly diverse, further complicating the task of programming
web-based applications.

This paper presents DOPPIO, a runtime system for the browser
that breaks the browser language barrier. DOPPIO addresses the
challenges needed to execute programs written in general-purpose
languages inside the browser by providing key system services
and runtime support that abstracts away the many differences
across browsers. Using DOPPIO, we built DOPPIOJVM, a proof-
of-concept complete implementation of a Java Virtual Machine
in JavaScript. DOPPIOJVM makes it possible for the first time to
run unmodified, off-the-shelf applications written in a conventional
programming language directly inside the browser. DOPPIOJVM
is already deployed as the compilation and execution engine for
the educational website CodeMoo.com, which teaches students how
to program in Java [21]. We further demonstrate DOPPIO’s utility
by combining it with Emscripten, extending its ability to port C++
applications to the browser. DOPPIO is available for download at
http://www.doppiojvm.org/.

Acknowledgements
The authors would like to thank CJ Carey and Jez Ng for their in-
valuable contributions to DOPPIO and DOPPIOJVM. We also thank
Google for funding two Google Summer of Code students to work
on DOPPIO, and the students themselves: Giles Lavelle, who im-
plemented Dropbox cloud storage for DOPPIO’s file system, and
Braden McDorman, who implemented DOPPIO’s TCP socket sup-
port. We also thank Daniel Jimenez, Yannis Smaragdakis, Kathryn S.
McKinley, Arjun Guha, Shriram Krishnamurthi, and the anonymous
reviewers for their feedback, which greatly improved this paper.

References
[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur.

Cooperative task management without manual stack management. In
USENIX Annual Technical Conference, General Track, pages 289–302,
2002.

[2] J. Ansel, P. Marchenko, Ú. Erlingsson, E. Taylor, B. Chen, D. L. Schuff,
D. Sehr, C. Biffle, and B. Yee. Language-independent sandboxing of
just-in-time compilation and self-modifying code. In M. W. Hall and
D. A. Padua, editors, PLDI, pages 355–366. ACM, 2011.

[3] P. Bright. Internet Explorer 10 share doubles again on the back of
Windows 7. http://goo.gl/hLYPa5.

[4] David Herman and Luke Wagner and Alon Zakai. asm.js. http:
//asmjs.org/spec/latest/.

[5] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Leveraging legacy
code to deploy desktop applications on the web. In R. Draves and
R. van Renesse, editors, OSDI, pages 339–354. USENIX Association,
2008.

[6] C. Fournet, N. Swamy, J. Chen, P.-É. Dagand, P.-Y. Strub, and
B. Livshits. Fully abstract compilation to JavaScript. In POPL, pages
371–384, 2013.

[7] Google. Dart: Structured web apps. http://www.dartlang.org/.
[8] Google. JRE Emulation Reference - Google Web Toolkit - Google

Developers. https://developers.google.com/web-toolkit/
doc/latest/RefJreEmulation.

[9] Google. NaCl and PNaCl. https://developers.google.com/
native-client/pnacl-preview/nacl-and-pnacl.

[10] Google. WebRTC. http://www.webrtc.org/.
[11] Google Web Toolkit Community. Google web toolkit. https:

//developers.google.com/web-toolkit/.
[12] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript.

In ECOOP, pages 126–150, 2010.
[13] Jeremy Ashkenas. CoffeeScript. http://coffeescript.org/.
[14] Khronos Group. WebGL - OpenGL ES 2.0 for the Web. http:

//www.khronos.org/webgl/.
[15] T. Lindholm and F. Yellin. The Java virtual machine specification. Java

series. Addison-Wesley, 1999.
[16] J. Martin. kanaka/websockify. https://github.com/kanaka/

websockify.
[17] Microsoft Corporation. IL2JS - an intermediate language to JavaScript

compiler. https://github.com/Reactive-Extensions/IL2JS.
[18] Microsoft Corporation. setImmediate API. http://ie.microsoft.

com/testdrive/Performance/setImmediateSorting/
Default.html.

[19] Microsoft Corporation. Welcome to TypeScript. http://www.
typescriptlang.org.

[20] R. Sasse, S. T. King, J. Meseguer, and S. Tang. Ibos: A correct-by-
construction modular browser. In C. S. Pasareanu and G. Salaün,
editors, FACS, volume 7684 of Lecture Notes in Computer Science,
pages 224–241. Springer, 2012.

[21] University of Illinois. Code Moo – A playful way to learn programming.
http://www.codemoo.com/index2.html.

[22] W3C Working Group. 6. Web application APIs. http://www.w3.
org/TR/html5/webappapis.html#timers.

[23] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: a sandbox
for portable, untrusted x86 native code. Commun. ACM, 53(1):91–99,
2010.

[24] D. Yoo, E. Schanzer, S. Krishnamurthi, and K. Fisler. Wescheme: the
browser is your programming environment. In G. Rößling, T. L. Naps,
and C. Spannagel, editors, ITiCSE, pages 163–167. ACM, 2011.

[25] A. Zakai. Porting “Me & My Shadow” to the Web. http://mzl.la/
17Mujzr.

[26] A. Zakai. Emscripten: an LLVM-to-JavaScript compiler. In OOPSLA
Companion, pages 301–312, 2011.

http://www.doppiojvm.org/
http://goo.gl/hLYPa5
http://asmjs.org/spec/latest/
http://asmjs.org/spec/latest/
http://www.dartlang.org/
https://developers.google.com/web-toolkit/doc/latest/RefJreEmulation
https://developers.google.com/web-toolkit/doc/latest/RefJreEmulation
https://developers.google.com/native-client/pnacl-preview/nacl-and-pnacl
https://developers.google.com/native-client/pnacl-preview/nacl-and-pnacl
http://www.webrtc.org/
https://developers.google.com/web-toolkit/
https://developers.google.com/web-toolkit/
http://coffeescript.org/
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
https://github.com/kanaka/websockify
https://github.com/kanaka/websockify
https://github.com/Reactive-Extensions/IL2JS
http://ie.microsoft.com/testdrive/Performance/setImmediateSorting/Default.html
http://ie.microsoft.com/testdrive/Performance/setImmediateSorting/Default.html
http://ie.microsoft.com/testdrive/Performance/setImmediateSorting/Default.html
http://www.typescriptlang.org
http://www.typescriptlang.org
http://www.codemoo.com/index2.html
http://www.w3.org/TR/html5/webappapis.html#timers
http://www.w3.org/TR/html5/webappapis.html#timers
http://mzl.la/17Mujzr
http://mzl.la/17Mujzr

	Introduction
	Related Work
	Conventional Languages
	New Languages
	OS Approaches

	Background: Browser Execution Model
	The Execution Model
	Asynchronicity
	WebWorkers and their Limitations

	The Doppio Execution Environment
	Automatic Event Segmentation
	Simulating Blocking with Asynchronous APIs
	Multithreading Support
	Browser Mechanisms for Quick Resumptions

	Doppio Operating System Services
	File System
	Unmanaged Heap
	TCP Sockets

	DoppioJVM
	Segmented Execution
	Multithreading
	Native Methods
	Class Loading
	Unsafe Memory Operations
	Exceptions
	JVM Objects and Arrays
	Interoperability with JavaScript

	Evaluation
	Case Study 1: DoppioJVM
	Case Study 2: Doppio and C++
	Doppio File System

	Discussion
	Conclusion

