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Abstract
Applications written to run on conventional operating systems
typically depend on OS abstractions like processes, pipes,
signals, sockets, and a shared file system. Porting these
applications to the web currently requires extensive rewriting
or hosting significant portions of code server-side because
browsers present a nontraditional runtime environment that
lacks OS functionality.

This paper presents BROWSIX, a framework that bridges
the considerable gap between conventional operating sys-
tems and the browser, enabling unmodified programs expect-
ing a Unix-like environment to run directly in the browser.
BROWSIX comprises two core parts: (1) a JavaScript-only
system that makes core Unix features (including pipes, con-
current processes, signals, sockets, and a shared file system)
available to web applications; and (2) extended JavaScript run-
times for C, C++, Go, and Node.js that support running pro-
grams written in these languages as processes in the browser.
BROWSIX supports running a POSIX shell, making it straight-
forward to connect applications together via pipes.

We illustrate BROWSIX’s capabilities via case studies that
demonstrate how it eases porting legacy applications to the
browser and enables new functionality. We demonstrate a
BROWSIX-enabled LATEX editor that operates by executing
unmodified versions of pdfLaTeX and BibTeX. This browser-
only LATEX editor can render documents in seconds, making
it fast enough to be practical. We further demonstrate how
BROWSIX lets us port a client-server application to run
entirely in the browser for disconnected operation. Creating
these applications required less than 50 lines of glue code and
no code modifications, demonstrating how easily BROWSIX
can be used to build sophisticated web applications from
existing parts without modification.
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1. Introduction
Web browsers make it straightforward to build user inter-
faces, but they can be difficult to use as a platform to build
sophisticated applications. Code must generally be written
from scratch or heavily modified; compiling existing code or
libraries to JavaScript is not sufficient because these applica-
tions depend on standard OS abstractions like processes and
a shared file system, which browsers do not support. Many
web applications are thus divided between a front-end UI that
runs in the browser and a backend server. The backend runs
on a traditional operating system, where the application can
take advantage of familiar OS abstractions and run a wide
variety of off-the-shelf libraries and programs.

As a representative example, websites like ShareLaTeX1

and Overleaf2 let users write and edit LATEX documents in
the browser without the need to install a TEX distribution
locally. This workflow lowers the barrier for students and
first-time LATEX authors and enables real-time collaboration,
eliminating some of the complexity of creating multi-author
documents. These applications achieve this functionality by
providing a browser-based frontend for editing; user input is
sent to the server for persistence and collaboration purposes.
When the user requests a generated PDF, the website runs
pdflatex and bibtex server-side on the user’s behalf, with
the resulting PDF sent to the browser when complete.

These web applications generate PDFs server-side out
of necessity because browsers lack the operating system
services and execution environment that Unix programs
expect. Creating PDFs from LATEX requires spawning multiple
processes to run pdflatex and bibtex, which need to read
from and write to a shared file system. If PDF generation
takes too long and the user cancels the request, the application
needs to send a SIGTERM or SIGKILL signal to clean up
any running processes. If PDF generation encounters an
error, the application needs to pipe the output of the relevant
process back to the client over the network. Since browsers

1 https://www.sharelatex.com/
2 https://www.overleaf.com/
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do not support processes, signals, pipes, sockets, or a shared
filesystem, they cannot perform any of these steps without
program modification.

Previous attempts to cope with this impedance mismatch
between conventional applications and the browser fall short
of providing the environment needed by many programs (see
Section 7). Emscripten and Doppio provide a POSIX-like run-
time system for single processes, including a single-process
file system, limited support for threads, synchronous I/O, and
proxying support for TCP/IP sockets [13, 16]. While these
single-process runtimes are useful for some applications, they
are severely limited because they are unable to provide the
range of operating system functionality that many legacy
applications demand.

To overcome these limitations, we introduce BROWSIX,
a framework that brings Unix abstractions to the browser
through a shared kernel and common system-call conventions,
bridging the gap between conventional operating systems and
the browser. BROWSIX consists of two core components:
(1) a JavaScript-only operating system that exposes a wide
array of OS services that applications expect (including
pipes, concurrent processes, signals, sockets, and a shared
file system); and (2) extended JavaScript runtimes for C,
C++, Go, and Node.js that let unmodified programs written
in these languages and compiled to JavaScript run directly
in the browser. Because BROWSIX’s components are written
entirely in JavaScript and require no plugins, applications
using BROWSIX can run in a wide range of unmodified
modern web browsers including Google Chrome, Mozilla
Firefox, Apple Safari, and Microsoft Edge. BROWSIX makes
it possible to port a wide range of existing applications and
their language runtimes to the browser by providing the core
functionality of a full operating system:

• Processes: BROWSIX implements a range of process
related system calls (including fork, spawn, exec, and
wait4) and provides a process primitive on top of Web
Workers, letting applications run in parallel and spawn
subprocesses.

• Signals: BROWSIX supports a substantial subset of the
POSIX signals API, including kill and signal handlers,
letting processes communicate with each other asyn-
chronously.

• Shared Filesystem: BROWSIX lets processes share state
through a shared FS.

• Pipes: BROWSIX exposes the standard pipe API, mak-
ing it simple for developers to compose processes into
pipelines.

• Sockets: BROWSIX supports TCP socket servers and
clients, making it possible to run server applications like
databases and HTTP servers together with their clients in
the browser.

• Language Agnostic: BROWSIX includes integration with
the runtime libraries of Emscripten (C/C++), GopherJS

Figure 1: A LATEX editor built using BROWSIX. BROWSIX’s
OS services and language runtimes make it possible to run
complex legacy code (including pdflatex and bibtex)
directly in the browser, without code modifications (See
Section 2 for details.)

(Go), and Node.js (JavaScript) to allow unmodified ap-
plications written in these languages to run directly as
processes in the browser. Through its simple system call
API, developers can straightforwardly integrate BROWSIX
into additional language runtimes.

BROWSIX dramatically simplifies the process of porting
complex applications to the browser environment. As a
demonstration, we have built a LATEX editor that runs entirely
within the browser. When the user requests a PDF, BROWSIX
runs make to re-build the document with pdflatex and
bibtex, and pipes their standard output and standard error to
the application. These TEX programs use BROWSIX’s shared
file system to read in the user’s source files, and any packages,
class files, and fonts referenced within, as in a traditional Unix
environment. The filesystem transparently loads any needed
external packages from the TeX Live distribution over HTTP
upon first access. Subsequent accesses to the same files are
instantaneous, as the browser caches them. While a full TeX
Live distribution is several gigabytes in size, a typical paper
only needs to retrieve several megabytes worth of packages
before it can be built. If the user cancels PDF generation,
BROWSIX sends a SIGKILL signal to these processes. If
PDF generation fails, the application can display the captured
standard out and standard error. The result is serverless PDF
generation composed from off-the-shelf parts, with minimal
engineering effort required to glue them together.

We demonstrate the utility of BROWSIX with two fur-
ther case studies. Using BROWSIX, we build an application
that dynamically routes requests to a remote server or an in-
BROWSIX server, both compiled from the same source code,
depending on the client’s performance and battery charac-
teristics. We also use BROWSIX to build a UNIX terminal
exposing a POSIX shell, enabling developers to launch and
compose applications and inspect BROWSIX state in a famil-
iar way.
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Contributions
This paper makes the following contributions:

• Bringing OS Abstractions and Services to the Browser.
We demonstrate that it is possible to provide a wide range
of key Unix abstractions and services in the browser on top
of existing web APIs. We implement these in BROWSIX, a
JavaScript-only framework featuring a kernel and system
calls that runs on all modern browsers (§3).

• Runtime Integration for Existing Languages. We ex-
tend the JavaScript runtimes of Emscripten (a C/C++ to
JavaScript toolchain), GopherJS (a Go to JavaScript com-
piler), and Node.js with BROWSIX support, letting unmod-
ified C, C++, Go, and Node.js programs execute and inter-
operate with one another within the browser as BROWSIX
processes (§4).

• Case Studies. We demonstrate BROWSIX’s utility by
building a LATEX editor, a serverless client-server web ap-
plication, and a Unix terminal out of off-the-shelf compo-
nents without modification. We characterize BROWSIX’s
performance under these case studies and with mi-
crobenchmarks (§5) and show that its overhead is low
enough for real-world usage.

• Guidance for Future Browsers. Based on our experi-
ence writing BROWSIX, we discuss current browser limi-
tations and propose solutions (§6).

2. BROWSIX Overview
To give an overview of BROWSIX’s features, this section
walks through the process of using BROWSIX to build an
in-browser LATEX editor using TeX Live utilities and GNU
Make. Figure 1 displays a screenshot of the editor.

2.1 LATEX Editor Overview
The editor presents a split-screen view to the user, with the
document’s LATEX source on the left, and generated PDF
preview on the right. The editor’s UI is a standard web
application, and represents the only new code. When the user
clicks on the “Build PDF” button, the editor uses BROWSIX
to invoke GNU Make in a BROWSIX process, which rebuilds
the PDF.

The process for building the PDF is familiar to anyone who
has used LATEX, except BROWSIX performs all of the needed
steps entirely in the browser instead of server-side. It runs
GNU Make to read a Makefile from BROWSIX’s file system,
which contains rules for rebuilding LATEX projects. Make then
runs pdflatex and bibtex, depending on whether the user
has updated the references file.

pdflatex and bibtex read any required LATEX packages,
fonts, and other system files from BROWSIX’s file system,
which lazily pulls in files as needed from the network. Both
of these applications write their output to BROWSIX’s file
system.

Once all steps have completed (or an error has occurred),
the Make process exits with an exit code indicating whether or
not PDF generation succeeded. BROWSIX sends the exit code
back to the web application. If GNU Make exits normally, the
editor reads the PDF from BROWSIX’s shared filesystem and
displays it to the user. Otherwise, it displays the standard out-
put from pdflatex and bibtex to the user, which describes
the source of the error.

2.2 Building with BROWSIX

Building any web application that runs Unix programs in
BROWSIX generally consists of the same three step process:
(1) compile the programs to JavaScript (using tools with
BROWSIX support), (2) stage files required by the application
for placement in the in-browser filesystem, and (3) add setup
code to the web application to initiate BROWSIX and launch
the programs.

Compiling to JavaScript: To run pdflatex, bibtex, and
GNU Make in BROWSIX, the developer compiles each pro-
gram to JavaScript using Emscripten, a C/C++ to JavaScript
compiler [16]. We extend Emscripten’s runtime library with
BROWSIX support, so standard Unix APIs map to BROWSIX
primitives. We discuss this extension in more detail in Sec-
tion 4.3.

Before compilation, the developer determines if any of the
programs use the fork command. Due to browser limitations
explored in Section 6, BROWSIX can only implement fork
as an asynchronous system call, which requires the use of a
variant of Emscripten’s compilation procedure that generates
less efficient code. If this option is configured incorrectly, the
program will fail at runtime when it attempts to invoke fork.
For the LATEX case study, only GNU Make uses fork and
requires this setting.

From this point, the build process is mostly unchanged
from a standard compilation. For programs that use the au-
totools build system, such as GNU Make and TeX Live,
instead of running ./configure, the developer invokes
emconfigure ./configure. This wrapper overrides stan-
dard tools like cc and ar with em prefixed alternatives that
compile the program with Emscripten, producing individual
JavaScript files for each program.

Staging the Filesystem: The developer next configures
BROWSIX’s in-browser filesystem so that it hosts all of
the files that the programs require. BROWSIX’s file system
extends Doppio’s BrowserFS file system with multi-process
support, building on its support for files backed by cloud
storage, browser-local storage, traditional HTTP servers, and
more [13].

For our LATEX example, both pdflatex and bibtex re-
quire read access to class, font, and other files from a LATEX
distribution to function properly. While a complete TeX Live
distribution contains over 60,000 individual files, the average
LATEX document only references a small subset of these files.
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To reduce load times and minimize the amount of storage
required on a client’s device, the developer can leverage
BROWSIX’s filesystem to load only the needed files. In this
case, the developer uploads a full TeX Live distribution to an
HTTP server and configures BROWSIX’s filesystem to use
an HTTP-backed filesystem backend. The filesystem will
then load these files on-demand from the network upon first
access. The browser caches these files automatically, making
subsequent access much faster.

BROWSIX Setup Code: Finally, the developer adds code to
the web application to load and initialize BROWSIX, and to
launch make to build the PDF. A script tag in the HTML
loads browsix.js, and a subsequent script tag with inline
JavaScript calls BROWSIX’s Boot function with the desired
filesystem configuration.

Additional application-specific initialization follows as
usual. Once the filesystem is ready, the developer adds
code to read the contents of main.tex and main.bib from
BROWSIX’s filesystem, and display the contents in the editor.
Then, the application registers a callback function with the
“Build PDF” button to run whenever the user clicks the button.

2.3 Execution with BROWSIX

When the application’s callback is executed in response to a
user’s “Build PDF” click, the application invokes the system
method on its kernel instance to start make. Make runs
pdflatex and bibtex as described in Section 1. When the
application receives a notification from BROWSIX that Make
has exited, it inspects Make’s exit code. If it is zero, the PDF
was generated successfully and is read from the filesystem.
Otherwise, the captured standard output and standard error
are displayed to the user so they can debug their markup.

This overview demonstrates how straightforward BROWSIX
makes it to take existing components that were designed to
work in a Unix environment and execute them seamlessly
inside a web browser. The next two sections provide technical
details on how BROWSIX provides Unix-like abstractions
in the browser environment and integrates with language
runtimes.

3. BROWSIX OS Support
The core of BROWSIX’s OS support is a kernel that controls
access to shared Unix services. Unix services, including
the shared file system, pipes, sockets, and task structures,
live inside the kernel, which runs as a JavaScript library in
the main browser thread. Processes run separately and in
parallel inside Web Workers, and access BROWSIX kernel
services through a system call abstraction. BROWSIX and
all of its runtime services are implemented in JavaScript and
TypeScript, a typed variant of JavaScript that compiles down
to vanilla JavaScript. Figure 2 provides a breakdown of each
of BROWSIX’s components.

Component Lines of Code (LoC)
Kernel 2,249
BrowserFS modifications 1,231
Shared syscall module 421
Emscripten integration* 1,557
(C/C++ support)
GopherJS integration* 926
(Go support)
Node.js integration* 1,742
TOTAL 8,126

Figure 2: BROWSIX components. * indicates these com-
ponents are written in JavaScript, while the rest of the
components are written in TypeScript (which compiles to
JavaScript).

3.1 Kernel
The kernel lives in the main JavaScript context alongside
the web application and acts as the intermediary between
processes and loosely coupled Unix subsystems. Processes
issue system calls to the kernel to access shared resources, and
the kernel routes these requests to the appropriate subsystem.
When the subsystem responds to the system call, it relays the
response to the process. The kernel is also responsible for
dispatching signals to processes, which we describe further
in Section 3.3. Figure 3 presents a partial list of the system
calls that the kernel currently supports.

In a departure from modern Unix systems, BROWSIX
does not support multiple users. A traditional kernel, for
example, uses user identities to check permissions on certain
system calls or for access to files. Unlike a traditional kernel,
BROWSIX executes as a JavaScript library on a webpage. As
a result, BROWSIX can rely on the browser’s built-in sandbox
and security features, such as the same origin policy, to isolate
the BROWSIX kernel from the underlying operating system
and other web origins. In other words, a BROWSIX application
and its users enjoy the same level of protection and security
as any other web application.

3.2 System Calls
The BROWSIX kernel supports two types of system calls:
asynchronous and synchronous. Asynchronous system calls
work in all modern browsers, but impose a high performance
penalty on C and C++ programs. Synchronous system calls
enable higher performance for C and C++ programs in devel-
opment versions of Chrome, Firefox, and Safari via a mech-
anism we describe below; this mechanism is already stan-
dardized and is on track to be supported by other mainstream
browsers.

Asynchronous System Calls: BROWSIX implements asyn-
chronous system calls in a continuation-passing style (CPS).
A process initiates a system call by sending a message to
the kernel with a process-specific unique ID, the system call
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Class System calls
Process Management fork, spawn, pipe2,

wait4, exit

Process Metadata chdir, getcwd, getpid

Sockets socket, bind, getsockname,
listen, accept, connect

Directory IO readdir, getdents,
rmdir, mkdir

File IO open, close, unlink,
llseek, pread, pwrite

File Metadata access, fstat, lstat,
stat, readlink, utimes

Figure 3: A representative list of the system calls imple-
mented by the BROWSIX kernel. fork is only supported
for C and C++ programs.

number, and arguments. BROWSIX copies all arguments, such
as file descriptor or a buffer to write to a file descriptor, from
the process to the kernel - no memory is shared. When the
kernel sends a response, the Web Worker process executes the
continuation (or callback) with response values, also copied
from the kernel’s heap into the process’s heap.

Asynchronous system calls work well for Node.js and Go,
but are only required for C and C++ programs that depend on
fork. In Node.js, the filesystem and other APIs accept a call-
back function to continue execution when the API’s result is
available, which maps directly onto BROWSIX asynchronous
system calls. The GopherJS runtime provides first-class sup-
port for suspending and resuming the call stack in order to
implement goroutines (lightweight thread-like primitives),
making it straightforward to resume from asynchronous sys-
tem calls as well. However, C and C++ programs using fork

must be compiled in an interpreted mode (called the Emter-
preter3) in order to save and restore the stack. This mode
produces bytecode that is in turn interpreted by a JavaScript
program at execution time. By contrast the standard asm.js4

output Emscripten produces is directly JIT compiled and
executed by the browser’s JavaScript engine, which is sub-
stantially faster than executing bytecode in the Emterpreter.
Most C and C++ programs do not use fork and are able to
be compiled as asm.js with synchronous system calls.

Synchronous System Calls: Synchronous system calls
work by sharing a view of a process’s address space be-
tween the kernel and the process, similar to a traditional
operating system kernel like Linux. At startup, the language
runtime in a process wishing to use synchronous system
calls passes to the kernel (via an asynchronous system call)
a reference to the heap (a SharedArrayBuffer object), along

3 https://github.com/kripken/emscripten/wiki/Emterpreter/
4 http://asmjs.org/

with two offsets into the heap: where to put system call return
values, and an offset to use to wake the process when the
syscall is complete.

A process invokes a synchronous system call by sending
a message as in the asynchronous case, but with arguments
limited to integers and integer offsets (representing point-
ers) into the shared memory array, rather than objects (like
ArrayBuffers) that would need to be copied between heaps.
For system calls like pread, data is copied directly from the
filesystem, pipe or socket into the process’s heap, avoiding a
potentially large allocation and extra copy.

After sending a message to the kernel, the process per-
forms a blocking wait on the offset into the SharedArray-
Buffer previously arranged with the kernel and is awakened
when the system call has completed or a signal is received.
This wait is provided by the JavaScript Atomics.wait func-
tion, part of the ECMAScript Shared Memory and Atomics
specification [6]. A consequence of this approach is that fork
is not compatible with synchronous system calls, as there is
no way to rewind, continue, or jump to a particular call stack
in the child Web Worker.

Synchronous system calls are faster in practice for a num-
ber of reasons. First, they only require one message to be
passed between the kernel and process, which is a relatively
slow operation. Second, system call arguments are numbers,
rather than potentially large arrays that need to be copied be-
tween JavaScript contexts. Finally, synchronous system calls
provide a blocking primitive and do not depend on language
runtimes to unwind and rewind the call stack. As such, they
are suitable for use with asm.js and WebAssembly func-
tions on the call stack, which are faster and more amenable
to optimization by the JavaScript runtime than Emscripten’s
interpreter.

Synchronous system calls require two features: SharedAr-
rayBuffers and Atomics. These are available in Firefox
Nightly, Safari Technology Preview, as well as Google
Chrome when SharedArrayBuffer support is enabled in
chrome://flags. SharedArrayBuffers and Atomics are
draft web standards and are on track to be part of standard
versions of all mainstream browsers [6].

3.3 Processes
BROWSIX relies on Web Workers as the foundation for em-
ulating Unix processes. However, Web Workers differ sub-
stantially from Unix processes, and BROWSIX must provide
a significant amount of functionality to bridge this gap.

In Unix, processes execute in isolated virtual address
spaces, run in parallel with one another when the system has
multiple CPU cores, and can interact with system resources
and other processes via system calls. However, the web
browser does not expose a process API to web applications.
Instead, web applications can spawn a Web Worker that runs
a JavaScript file in parallel with the application.

A Web Worker has access to only a subset of browser in-
terfaces (notably excluding the Document Object Model
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(DOM)), runs in a separate execution context, and can
only communicate with the main browser context via asyn-
chronous message passing. Web Workers are not aware of
one another, cannot share memory with one another, and can
only exchange messages with the main browser context that
created them (see Section 6 for a discussion). Major browsers
like Chrome and Safari do not support spawning sub-workers
from workers, so-called nested workers, and have not added
support for them since they were first proposed in 2009. Thus,
if a Web Worker needs to perform a task in parallel, it must
delegate the request to the main browser thread, and proxy all
messages to that worker through the main browser thread. Per-
haps unsurprisingly, the limitations and complexity of Web
Workers have hindered their adoption in web applications.

By contrast, BROWSIX implements Unix processes on
top of Web Workers, giving developers a familiar and full-
featured abstraction for parallel processing in the browser.
Each BROWSIX process has an associated task structure in
the kernel that contains its process ID, parent’s process ID,
Web Worker object, current working directory, and map of
open file descriptors. Processes have access to the system
calls in Figure 3, and invoke them by sending a message
with the system call name and arguments to the kernel. As
a result, processes can share state via the file system, send
signals to one another, spawn sub-processes to perform tasks
in parallel, and connect processes together using pipes. Below,
we describe how BROWSIX maps familiar OS interfaces onto
Web Workers.

spawn: BROWSIX supports spawn, which constructs a new
process from a specified executable on the file system. spawn
is the primary process creation primitive exposed in mod-
ern programming environments such as Go and Node.js, as
fork is unsuitable for general use in multithreaded processes.
spawn lets a process specify an executable to run, the argu-
ments to pass to that executable, the new process’s working
directory, and the resources that the subprocess should inherit
(such as file descriptors). In BROWSIX, executables include
JavaScript files, file beginning with a shebang line, and We-
bAssembly files. When a process invokes spawn, BROWSIX
creates a new task structure with the specified resources and
working directory, and creates a new Web Worker that runs
the target executable or interpreter.

There are two technical challenges to implementing
spawn. First, the Web Worker constructor takes a URL to a
JavaScript file as its first argument. Files in BROWSIX’s file
system may not correspond to files on a web server. For exam-
ple, they might be dynamically produced by other BROWSIX
processes. To work around this restriction, BROWSIX gen-
erates a JavaScript Blob object that contains the data in the
file, obtains a dynamically-created URL for the blob from the
browser’s window object, and passes that URL as a parameter
to the Web Worker constructor. All modern web browsers
now support constructing Workers from blob URLs.

The second challenge is that there is no way to pass data
to a Worker on startup apart from sending a message. As
processes synchronously access state like the arguments
vector and environment map, BROWSIX-enabled runtimes
delay execution of a process’s main() function until after
the worker has received an “init” message from the kernel
containing the process’s arguments and environment.

fork: The fork system call creates a new process contain-
ing a copy of the current address space and call stack. Fork
returns twice – first with a value of zero in the new process,
and with the PID of the new process in the original. Web
Workers do not expose a cloning API, and JavaScript lacks
the reflection primitives required to serialize a context’s entire
state into a snapshot. Thus, BROWSIX only supports fork
when a language runtime is able to completely enumerate and
serialize its own state. Section 4 describes how we extend
Emscripten to provide fork support for C/C++ programs
compiled to JavaScript.

wait4: The wait4 system call reaps child processes that
have finished executing. It returns immediately if the specified
child has already exited, or the WNOHANG option is specified.
Waiting requires that the kernel not immediately free task
structures, and required us to implement the zombie task
state for children that have not yet been waited upon. The
C library used by Emscripten, musl, uses the wait4 system
call to implement the C library functions wait, wait3, and
waitpid.

exit: Language runtimes with BROWSIX-support are re-
quired to explicitly issue an exit system call when they are
done executing, as the containing Web Worker context has
no way to know that the process has finished. This is due to
the event-based nature of JavaScript environments – even if
there are no pending events in the Worker’s queue, the main
JavaScript context could, from the perspective of the browser,
send the Worker a message at any time.

getpid, getppid, getcwd, chdir: These four system
calls operate on data in the current process’s task structure,
which lives in the BROWSIX kernel. getpid returns the pro-
cess’s ID, getppid returns the parent process’s ID, getcwd
returns the process’s working directory, and chdir changes
the process’s working directory.

3.4 Pipes
BROWSIX pipes are implemented as in-memory buffers with
wait queues. If there is no data to be read when a process
issues a read system call, BROWSIX enqueues the callback
encapsulating the system call response which it invokes when
data is written to the pipe. Similarly, if there is not enough free
space in a pipe’s internal buffer for a write request, BROWSIX
waits until enough space frees up in the buffer from read
requests to complete the write.
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3.5 Sockets
BROWSIX implements a subset of the BSD/POSIX socket
API, with support for SOCK STREAM (TCP) sockets for com-
municating between BROWSIX processes. These sockets en-
able servers that bind, listen and then accept new con-
nections on a socket, along with clients that connect to a
socket server, with both client and server reading and writing
from the connected file descriptor. Sockets are sequenced,
reliable, bi-directional streams.

3.6 Shared File System
BROWSIX builds on and significantly extends BrowserFS’s
file system, part of Doppio [13]. BrowserFS already included
support for multiple mounted filesystems in a single hierar-
chical directory structure. BrowserFS provides multiple file
system backend implementations, such as in-memory, zip
file, XMLHttpRequest, Dropbox, and an overlay filesystem.
BrowserFS provides a unified, encapsulated interface to all
of these backends.

BROWSIX extends BrowserFS in two key ways: it adds
multi-process support and incorporates improved support for
loading files over HTTP. To provide multi-process support,
BROWSIX’s file system adds locking operations to the overlay
filesystem to prevent operations from different processes from
interleaving. In addition, BROWSIX incorporates domain-
specific optimizations into its file system; for example, it
avoids expensive operations like recording the call stack when
a path lookup fails (a common event).

BROWSIX modifies BrowserFS’s overlay backend to lazily
load files from its read-only underlay; the original version
eagerly read all files from the read-only filesystem upon
initialization. BROWSIX’s approach drastically improves the
startup time of the kernel, minimizes the amount of data
transferred over the network, and enables applications like
the LATEX editor where only a small subset of files are required
for a given end user.

Finally, BROWSIX implements system calls that operate
on paths, like open and stat, as method calls to the kernel’s
BrowserFS instance. When a system call takes a file descrip-
tor as an argument, the kernel looks up the descriptor in the
tasks’s file hashmap and invokes the appropriate method on
that file object, calling into BrowserFS for regular files and
directories. Child processes inherit file descriptor tables, and
BROWSIX explicitly manages each object (whether it is a file,
directory, pipe or socket) with reference counting.

4. BROWSIX Runtime Support
Applications invoke BROWSIX system calls indirectly through
their runtime systems. This section describes the runtime sup-
port we added to GopherJS, Emscripten, and Node.js along
with the APIs exposed to web applications so they can execute
programs in BROWSIX.

kernel.system(
’pdflatex example.tex’,
function(pid , code) {

if (code === 0) {
displayPDF ();

} else {
displayLatexLog ();

}
}, logStdout , logStderr);

Figure 4: Creating a BROWSIX process from JavaScript.

4.1 Browser Environment Extensions
Web applications run alongside the BROWSIX kernel in the
main browser context, and have access to BROWSIX features
through several global APIs. BROWSIX exposes new APIs
for process creation, file access, and socket notifications, and
an XMLHttpRequest-like interface to send HTTP requests to
BROWSIX processes.

To start a BROWSIX process the client application invokes
an API similar to C’s system, as seen in Figure 4. In addition
to specifying the program to run and arguments, callbacks are
passed to BROWSIX that are invoked when data is available on
standard out, standard error and upon program exit. BROWSIX
additionally provides APIs to enable the client to create, read,
and write files.

Socket notifications let applications register a callback to
be invoked when a process has started listening on a particular
port. These notifications let web applications launch a server
as a process and appropriately delay communicating with the
server until it is listening for messages. Web applications do
not need to resort to polling or ad hoc waiting.

BROWSIX provides an XMLHttpRequest-like API for
sending requests from the web application to in-browser
HTTP servers running in BROWSIX. This allows JavaScript
to interact with HTTP 1.1 servers running as BROWSIX
processes as if they were remote HTTP servers. The API
encapsulates the details of connecting a BROWSIX socket
to the server, serializing the HTTP request to a byte array,
sending the byte array to the BROWSIX process, processing
the (potentially chunked) HTTP response, and generating the
expected web events.

4.2 Common Services
BROWSIX provides a small syscall layer as a JavaScript
module that runs in a Web Worker. This layer provides a con-
crete API for asynchronous system calls over the browser’s
message passing primitives. Language runtimes use this mod-
ule to communicate with the kernel. Methods provided by the
syscall layer take the same arguments as Linux system calls
of the same name, along with an additional argument: a call-
back function. This callback is executed when the syscall
module receives a message response from the kernel. Unlike
a traditional single-threaded process, a BROWSIX process
can have multiple outstanding system calls, which enables
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function sys_getdents64(cb , trap , fd, dirp , len) {
var done = function (err , buf) {

if (!err)
dirp.set(buf);

cb([err ? -1 : buf.byteLength , 0, err ? err :
0]);

};
syscall_1.syscall.getdents(fd , len , done);

}

Figure 5: Implementing the getdents64 system call in
GopherJS.

runtimes like GopherJS to implement user-space threads on
top of a single Web Worker execution context.

Signals are sent over the same message passing interface
as system calls. The common syscall module provides a
way to register signal handlers for the standard Unix signals,
such as SIGCHLD.

4.3 Runtime-specific Integration
For many programming languages, existing language run-
times targeted for the browser must bridge the impedance
mismatch between synchronous APIs present on Unix-like
systems and the asynchronous world of the browser. Compile-
to-JavaScript systems like Emscripten, ClojureScript [8],
Scala.js [3], js of ocaml [14], WhaleSong (Racket) [15], and
GopherJS all employ different approaches. Since BROWSIX
supports both synchronous and asynchronous system calls,
language runtimes can choose the system call convention
most appropriate for their implementation.

This section describes the runtime support we added to
language runtimes for Go, C/C++, and Node.js. Extending
BROWSIX support to additional language runtimes remains
as future work.

Go: Go is a systems language developed at Google de-
signed for readability, concurrency, and efficiency. To run
Go programs under BROWSIX, we extended the existing Go-
pherJS compiler and runtime to support issuing and wait-
ing for system calls under BROWSIX. GopherJS already pro-
vides full support for Go language features like goroutines
(lightweight threads), channels (communication primitives),
and delayed functions.

We extended the GopherJS runtime with support for
BROWSIX through modifications to the runtime. The main
integration points are a BROWSIX-specific implementation of
the syscall.RawSyscall function (which handles syscalls
in Go), along with overrides of several Go runtime functions.

The replacement for RawSyscall is implemented in Go.
It allocates a Go channel object, and this function calls
into the BROWSIX JavaScript syscall library, passing the
system call number, arguments, and a callback to invoke.
RawSyscall then performs a blocking read on the Go chan-
nel, which suspends the current goroutine until the callback is
invoked. When the system call response is received from the
BROWSIX kernel, GopherJS’s existing runtime takes care of

__syscall220: function(which , varargs) {
#if EMTERPRETIFY_ASYNC

return EmterpreterAsync.handle(function(resume)
{

var fd = SYSCALLS.get(), dirp = SYSCALLS.get
(), count = SYSCALLS.get();

var done = function(err , buf) {
if (err > 0)

HEAPU8.subarray(dirp , dirp+buf.byteLength
).set(buf);

resume(function () {
return err;

});
};
SYSCALLS.browsix.syscall.async(done , ’

getdents ’, [fd, count ]);
});

#else
var fd = SYSCALLS.get(), dirp = SYSCALLS.get(),

count = SYSCALLS.get();
return SYSCALLS.browsix.syscall.sync (220, fd,

dirp , count);
#endif

},

Figure 6: Implementing the BROWSIX getdents64 syscall
in Emscripten.

re-winding the stack and continuing execution. The syscall
library invokes a function specific to each supported system
call to marshal data to and from the BROWSIX kernel. Adding
support for any new system call is a matter of writing a small
handler function and registering it; an example is shown in
Figure 5

BROWSIX replaces a number of low-level runtime func-
tions; the most important are syscall.forkAndExecInChild
and net.Listen. The former is overridden to directly in-
voke BROWSIX’s spawn system call, and the latter to provide
access to BROWSIX socket services. Additional integration
points include an explicit call to the exit system call when
the main function exits, and waiting until the process’s argu-
ments and environment have been received before starting
main() (see §3.3).

C and C++: We also extend Emscripten, Mozilla Re-
search’s LLVM-based C and C++ compiler that targets
JavaScript, with support for BROWSIX. BROWSIX-enhanced
Emscripten supports two modes - synchronous system calls
and asynchronous system calls (described in Section 3.2),
one of which is selected at compile time. Asynchronous
system calls require use of Emscripten’s interpreter mode
(named the “Emterpreter”) to save and restore the C stack. All
functions that may be on the stack during a system call must
be interpreted to ensure the stack can be restored when the
system call completes. Emscripten can selectively compile
other functions in an application to asm.js, which will be
JIT-compiled and run as native JavaScript by the browser.
Synchronous system calls do not have this limitation.

As with GopherJS, Emscripten provides a clear integration
point at the level of system calls. Emscripten provides imple-
mentations for a number of system calls, but is restricted to
performing in-memory operations that do not block. We re-
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place Emscripten system call implementations with ones that
call into the BROWSIX kernel, such as in Figure 6. In the case
of getdents and stat, padding was added to C structure
definitions to match the layout expected by the BROWSIX
kernel.

When a C process invokes fork, the runtime sends a
copy of the global memory array, which includes the C
stack and heap, along with the current program counter
(PC) to the kernel. After the kernel launches a new Web
Worker, it transfers this copy of global memory and PC to the
new Worker as part of the initialization message. When the
Emscripten runtime in the new BROWSIX process receives the
initialization message, if a memory array and PC are present
the runtime swaps them in and invokes the Emterpreter to
continue from where fork was invoked.

Node.js: Node.js (a.k.a. “Node”) is a platform for building
servers and command line tools with JavaScript, implemented
in C, C++ and JavaScript on top of the V8 JavaScript en-
gine. Node.js APIs are JavaScript modules that are loaded
into the current JavaScript context by invoking the require
built-in function. These high-level APIs are implemented in
platform-agnostic JavaScript and call into lower-level C++
bindings, which in turn invoke operating system interfaces
like filesystem IO, TCP sockets, and child process manage-
ment. Node.js embraces the asynchronous, callback-oriented
nature of JavaScript – most Node APIs that perform system
calls take a callback parameter that is invoked when results
are ready.

To run servers and utilities written for Node.js under
BROWSIX, we provide a browser-node executable that
packages Node’s high-level APIs with pure-JavaScript re-
placements for Node’s C++ bindings that invoke BROWSIX
system calls. browser-node is a single file that runs in a
BROWSIX process. BROWSIX also replaces several other
native modules, like the module for parsing and generating
HTTP responses and requests, with pure JavaScript imple-
mentations. Node executables can be invoked directly, such
as node server.js, or will be invoked indirectly by the
kernel if node is specified as the interpreter in the shebang
line of a text file marked as executable.

5. Evaluation
Our evaluation answers the following questions: (1) Does
bringing Unix abstractions into the browser enable com-
pelling use cases? (2) Is the performance impact of running
programs under BROWSIX acceptable?

5.1 Case Studies
We evaluate the applicability and advantages of bringing Unix
abstractions into the browser with two case studies in addi-
tion to the LATEX editor from the overview (§2). First, we
build a web application for creating memes that can run its
unmodified server in BROWSIX. The meme generator trans-
parently switches between generating memes in-browser or

Figure 7: A meme generator built using BROWSIX. All
server-side functionality was moved into the browser without
modifying any code.

server-side depending on network and device characteristics.
Second, we build a Unix terminal that lets application devel-
opers use dash, a widely-used POSIX shell, to interact with
BROWSIX in a familiar manner.

5.1.1 Meme Generator
Our meme generator lets users create memes consisting
of images with (nominally) humorous overlaid text. Fig-
ure 7 contains a screenshot. Existing services, such as
MemeGenerator.net, perform meme generation server-side.
Moving meme creation into the browser would reduce server
load and reduce latency when the network is overloaded or
unreliable, but doing so would normally present a significant
engineering challenge. The meme generation server uses
sockets to communicate with the browser over HTTP and
reads meme templates from the file system. Before BROWSIX,
the client and server code would need to be re-architected
and rewritten to run together in the browser.

To demonstrate BROWSIX’s ability to quickly port code
from the server to the web, we implement our meme creator as
a traditional client/server web application; Figure 8a contains
a system diagram. The client is implemented in HTML5 and
JavaScript, and the server is written in Go. The server reads
base images and font files from the filesystem, and uses off-
the-shelf third-party Go libraries for image manipulation and
font rendering to produce memes [5]. The server also uses
Go’s built-in http module to run its web server. Note that
this server is stateless, following best practices [10]; porting
a stateful server would naturally require more care.

To port the server to BROWSIX, we follow the process
outlined in Section 2. First, we compile the Go server to
a single JavaScript file using GopherJS. Then, we stage
the font and images for the BrowserFS filesystem. Finally,
we augment the client application to load the BROWSIX
JavaScript module, initialize a kernel instance, and start the
meme-server.

Next, we augment the web application to dynamically
route meme generation requests to a server running in
BROWSIX or to the cloud. We add a function to the ap-
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(a) Meme creator running without BROWSIX

(b) Meme creator running with BROWSIX

Figure 8: System diagram of the meme generator application with and without BROWSIX, demonstrating how the client and
server interact with one another. With BROWSIX, the server runs in the browser without code modifications.

plication that implements a simple policy: if the network is
inaccessible, or the browser is running on a desktop (which is
a proxy for a powerful device), the application routes meme
generation requests to the server running in BROWSIX. Other-
wise, it sends the requests to the remote server. In both cases,
the web application uses an XMLHttpRequest-like interface
to make the request, requiring little change to the existing
code.

Figure 8b displays a system diagram of the modified meme
generator. With this modification, meme generation works
even when offline. The code required to implement this policy
and dynamic behavior amounted to less than 30 lines of
JavaScript.

5.1.2 The BROWSIX Terminal
To make it easy for developers to interact with and test
programs in BROWSIX, we implement an in-browser Unix
terminal that exposes a POSIX shell. The terminal uses the
Debian Almquist shell (dash), the default shell of Debian and
Ubuntu. We compile dash to JavaScript using BROWSIX-
enhanced Emscripten, and run it in a BROWSIX process.

Since the BROWSIX terminal uses a standard shell, de-
velopers can use it to run existing and new shell scripts
in BROWSIX. Developers can pipe programs together (e.g.
cat file.txt | grep apple > apples.txt), execute
programs in a subshell in the background with &, run shell
scripts, and change environment variables. Developers can

also execute Go, C/C++, and Node.js programs from the shell
as expected.

The terminal includes a variety of Unix utilities on the
shell’s PATH that we wrote for Node.js: cat, cp, curl, echo,
exec, grep, head, ls, mkdir, rm, rmdir, sh, sha1sum,
sort, stat, tail, tee, touch, wc, and xargs. These pro-
grams run equivalently under Node and BROWSIX without
any modifications, and were used heavily during development
to debug BROWSIX functionality.

Summary: BROWSIX makes it trivial to execute applica-
tions designed to run in a Unix environment within the
browser, enabling the rapid development of sophisticated web
applications. These applications can incorporate server code
into the browser and harness the functionality of existing
applications.

5.2 Performance
We evaluate the performance overhead of BROWSIX on our
case studies. All experiments were performed on a late-2013
Macbook Pro with an Intel i7-4558U CPU and 16 GB of
RAM, running Linux 4.8. Safari performance numbers are
from the same machine running macOS Sierra.

LATEX Editor: Running pdflatex under BROWSIX im-
poses an order of magnitude slowdown, as shown in Fig-
ure 9. A native execution of pdflatex under Linux takes
around 86 milliseconds on a single page document with a
bibliography. When using synchronous system calls (as sup-
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Platform Runtime
Linux 0.086s
Chrome Beta 56 2.0s (24×)
Firefox Nightly 54 2.6s (31×)
Firefox Nightly 54* 0.79s (9×)
Safari Tech Preview 22 1.8s (21×)

Figure 9: Execution times for compiling a single-page doc-
ument with a bibliography with pdflatex from TeX Live
2015. Times reported are the mean of 10 executions. (* Indi-
cates Firefox was built with an 8-line patch enabling asm.js

validation with the use of SharedArrayBuffers.)

ported by Chrome, Firefox, and Safari), the same document
builds in BROWSIX in between 0.79 and 2.6 seconds, a slow-
down of between 9× and 31×. Firefox has asm.js specific
optimizations that are enabled when a JavaScript module
passes asm.js validation. Using a SharedArrayBuffer for the
asm.js module’s heap, as BROWSIX does for synchronous
system calls, currently causes Firefox to fail validation and
fall back to the standard JIT5. The modified Firefox results
show that if the rules for asm.js are slightly relaxed to allow
SharedArrayBuffers for the heap, performance is improved by
over 3×. Building pdflatex with asynchronous system calls
and the Emterpreter for broader compatibility with today’s
browsers increases runtime to around 12 seconds.

Meme Generator: The meme generator performs two types
of HTTP requests to the server: requests for a list of available
background images, and requests to generate a meme. We
benchmark the performance of the meme generator server
running natively and running in Browsix in both Google
Chrome 52 and Mozilla Firefox 48. Times reported are the
mean of 100 runs following a 20-run warmup.

On average, a request for a list of background images
takes 1.7 milliseconds natively, 9 ms in Chrome, and 6 ms
in Firefox. While requests to a server running natively on
the same machine as the client are faster than those served
by BROWSIX, BROWSIX is faster once a network connection
and roundtrip latencies are factored in. When comparing an
instance of the meme-server running on an EC2 instance,
the in-BROWSIX request completed three times as fast as the
request to the remote machine.

The in-BROWSIX HTTP request to generate a meme
takes approximately two seconds, compared to 200 ms when
running server-side. We believe this slowdown is primarily
due to the lack of native 64-bit integer primitives when
numerical code is compiled to JavaScript with GopherJS
rather than overhead introduced by BROWSIX; we expect this
to improve when future browsers support native access to 64-
bit integers (through WebAssembly), and with independent
improvements to the GopherJS compiler.

5 https://bugzilla.mozilla.org/show_bug.cgi?id=1334941

Command Native Node.js BROWSIX
sha1sum 0.002s 0.067s 0.189s
ls 0.001s 0.044s 0.108s

Figure 10: Execution time of utilities under BROWSIX, com-
pared to the same utilities run under Node.js, and the na-
tive GNU/Linux utilities. sha1sum is run on usr/bin/node,
and ls is run on /usr/bin. Running in JavaScript (with
Node.js and BROWSIX) imposes most overhead; running in
the BROWSIX environment adds roughly another 3× over-
head.

BROWSIX Terminal and Utilities: Unix utilities provide
a mechanism to compare the performance of real-world
programs under Linux and BROWSIX. Figure 10 shows
the results of running the same JavaScript utility under
BROWSIX and on Linux under Node.js, and compares this to
the execution time of the corresponding GNU Coreutils utility
(written in C, running on Linux). Most of the overhead can be
attributed to JavaScript (the basis of Node.js and BROWSIX);
subsequently running in the BROWSIX environment imposes
roughly a 3× overhead over Node.js on Linux. Nonetheless,
execution time (completion in under 200 milliseconds) is low
enough that it should be generally acceptable to users.

Microbenchmarks: We ran four benchmarks from the
HBench-OS benchmark suite [2] to characterize the relative
performance of the operating system services provided by
BROWSIX. The results are in Figure 11. The first two bench-
marks, lat syscall and lat fslayer, perform simple
system calls, getpid and a single-byte write to /dev/null

respectively. These calls, which run three orders of magnitude
slower under BROWSIX, accentuate BROWSIX’s overhead:
the host OS must schedule several userspace threads to com-
plete each BROWSIX system call. In Linux, these system
calls typically do not block or cause a task reschedule. Bench-
marks that perform more work in the kernel result in lower
overhead. The latter two benchmarks, lat fs and lat tcp,
respectively create a 1024-byte file and perform a pair of
single-byte read and writes over a socket on the loopback
interface between two processes. The resulting overhead is
between 99− 125× for file creation and 10− 24× for TCP.
In these cases, BROWSIX’s system call overhead is amor-
tized across useful work done in the kernel. The lat tcp

benchmark is the only benchmark that requires scheduling
multiple processes under Linux, which BROWSIX execution
more closely matches.

Summary: While BROWSIX’s performance is limited by
the performance of underlying browser primitives (notably,
the lack of native 64-bit integers and message passing per-
formance), it provides acceptable performance for a range of
applications.
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Benchmark Linux Chrome Firefox Safari
lat syscall:getpid 0.04 µs 32.68 µs (767×) 36.27 µs (851×) 25.48 µs (598×)
lat fslayer 0.06 µs 33.64 µs (548×) 38.56 µs (628×) 26.84 µs (437×)
lat fs:create 1024 25.57 µs 3204.73 µs (125×) 2963.42 µs (116×) 2520.64 µs (99×)
lat tcp:localhost 16.98 µs 374.09 µs (22×) 415.18 µs (24×) 174.16 µs (10×)

Figure 11: Results of running several HBench-OS latency benchmarks under Linux and under BROWSIX. Numbers in parentheses
are relative slowdown compared to native. Each benchmark was run 25 times per environment and the mean is displayed. All
benchmarks used synchronous BROWSIX system calls (Section 3.2) except for lat tcp, which requires asynchronous system
calls for fork support. Browsers tested were Chrome Beta 56, Firefox Nightly 54, and Safari Technology Preview 22.

6. Discussion
The process of implementing BROWSIX has highlighted
opportunities for improvement in the implementation and
specification of browser APIs, especially Web Workers. We
outline a number of optimizations and natural extensions that
are generally useful, and would extend BROWSIX’s reach.

Worker Priority Control: The parent of a Web Worker
has no way to lower the priority of a created worker. As
workers are implemented on top of OS threads, this concept
maps cleanly onto OS-level priorities/niceness. Providing
this facility would let web applications prevent a low-priority
CPU-intensive worker from interfering with the main browser
thread.

postMessage() Backpressure: Traditional operating sys-
tems attempt to prevent individual processes from affect-
ing system stability in a number of ways. One of these
is providing backpressure, wherein the process attempting
to write to a pipe or socket is suspended (the system call
blocks) until the other end of the pipe reads the data or the
data fits into a fixed size buffer. This approach prevents un-
bounded resource allocation in the kernel. In the browser, the
postMessage() function can be called from a JavaScript
context an unbounded number of times and can eventually
cause the browser to run out of allocatable memory.

Message Passing Performance: Message passing is three
orders of magnitude slower than traditional system calls in
the three browsers we evaluate, Chrome, Firefox, and Safari.
A more efficient message passing implementation would
improve the performance of BROWSIX’s system calls and
other inter-process communication.

Memory Mapping: BROWSIX is currently unable to sup-
port C/C++ applications like PostgreSQL that use mmap. Em-
scripten uses a single typed array to represent the unmanaged
C/C++ heap. While recent browser interfaces make it possi-
ble to share this typed array among BROWSIX processes [6],
browsers cannot yet map regions of the typed array into an-
other typed array, which would be necessary to fully emulate
mmap. Features on the WebAssembly roadmap, which aim for

implementation across browsers, would enable BROWSIX to
support additional features like shared mmap and shm6.

Stack Management: C provides the ability to save and
change the current thread’s context with the setcontext and
getcontext functions. While rarely useful or advisable for
applications, it enables specialized low-level libraries to save
and restore the C stack. A similar JavaScript primitive cou-
pled with the use of SharedArrayBuffers would let BROWSIX
support fork in Emscripten applications as a synchronous
system call.

7. Related Work
In-Browser Execution Environments: BROWSIX signifi-
cantly extends past efforts to bring traditional APIs and
general-purpose languages to the browser; Table 1 provides
a comparison. Doppio’s focus is providing single-process
POSIX abstractions [13]. BROWSIX builds on and extends its
filesystem component, BrowserFS, to support multiple pro-
cesses. Emscripten compiles LLVM bytecode to JavaScript,
enabling the compilation of C and C++ to JavaScript [16];
as Section 4 describes, BROWSIX augments its runtime sys-
tem so that unmodified C and C++ programs compiled with
Emscripten can take full advantage of its facilities. BROWSIX
provides similar runtime support for Go programs through
GopherJS [11].

The Illinois Browser Operating System (IBOS) makes key
browser APIs like HTTP requests and cookie storage OS
primitives, removing library and OS code not necessary for
those APIs from the trusted computing base [12]. Embassies
refactors the web browser to separate the client execution
interface from the developer programming interface [9]. Em-
bassies models the client as a pico-datacenter, running each
tenant (web page) in a separate VM. In addition to providing
improved isolation and security for traditional web pages,
Embassies enables safely executing arbitrary native code on
the client in addition to a traditional WebKit HTML stack.
Browsix provides OS abstractions on top of browser APIs,
and could be run in IBOS or Embassies for improved isolation
and security.

6 https://github.com/WebAssembly/design/blob/master/

FutureFeatures.md
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ENVIRONMENTS BROWSIX 3 3 3 3 3 3

DOPPIO [13] † †
asm.js

WebAssembly
LANGUAGE RUNTIMES Emscripten (C/C++) † † †

GopherJS (Go)
BROWSIX + Emscripten 3 3 3 3 3 3

BROWSIX + GopherJS 3 3 3 3 3 3

Table 1: Feature comparison of JavaScript execution environments and language runtimes for programs compiled to JavaScript.
† indicates that the feature is only accessible by a single running process. BROWSIX provides multi-process support for all of
its features. Both asm.js and WebAssembly are pure computational environments and as such don’t provide any of the OS
features listed.

Xax is a browser plugin model designed to ease porting
legacy code to the web [4]. It shares a similar focus on OS
independence and legacy support along with an asynchronous
system-call ABI, but runs native code in a hardware-isolated
picoprocess. The Xax model requires developers to compile
and host binaries for all architectures an end user might
use, while BROWSIX leverages the cross-platform nature of
JavaScript and WebAssembly to enable a compile-once, run-
everywhere development workflow.

Kernel Design and OS Interfaces: BROWSIX resembles a
Linux kernel task running on a microkernel [7], as it relies on
an underlying system for messaging, scheduling and context
switching. Barrelfish, a many-core, heterogenous OS [1]
showed that asynchronous, shared-nothing system calls could
be practical. BROWSIX somewhat mirrors the per-core, shared
nothing structure of a multikernel, as individual BROWSIX
processes do not use inter-domain communication for tasks
like memory allocation and timers.

8. Conclusion
This paper introduces BROWSIX, a framework that brings the
essence of Unix to the browser. BROWSIX makes it almost
trivial to build complex web applications from components
written in a variety of languages without modifying any code,
and promises to significantly reduce the effort required to
build highly sophisticated web applications. BROWSIX is
open source, and is freely available at https://browsix.
org.
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