
Research Statement
John Vilk

jvilk@cs.umass.edu

The web browser is the most important application runtime today, encompassing all types of appli-
cations on practically every Internet-connected device. Browsers power complete office suites, media
players, games, and augmented and virtual reality experiences, and they integrate with cameras, mi-
crophones, GPSes, and other sensors available on computing devices. Many apparently native mobile
and desktop applications are secretly hybrid apps that contain a mix of native and browser code. His-
tory has shown that when new devices, sensors, and experiences appear on the market, the browser
will evolve to support them.

Despite the browser’s importance, developing web applications is exceedingly difficult. Web browsers
organically evolved from a document viewer into a ubiquitous program runtime. The browser’s script-
ing language for web designers, JavaScript, has grown into the only universally supported program-
ming language in the browser. Unfortunately, JavaScript is notoriously difficult to write and debug.
The browser’s high-level and event-driven I/O interfaces make it easy to add simple interactions to
webpages, but these same interfaces lead to nondeterministic bugs and performance issues in larger
applications. These bugs are challenging for developers to reason about and fix.

My research vision is to revolutionize web development. Existing web development tools are
based on conventional techniques developed in the 1970s that are ill-suited for the unique challenges
posed by the browser. My research explores novel techniques that drive new real-world development
tools aimed at helping developers overcome these challenges. My research addresses three fundamental
questions related to web programming: Can we make web programming easier? Can we make web
applications easier to debug? Can we make web applications leaner and faster?

My work, supported by a Facebook PhD Fellowship, has already had extensive real world impact.
My research powers historical software that runs in the browser at the Internet Archive, is included in
the ChakraCore JavaScript engine that ships with Windows 10, and has led to dozens of bug fixes in
popular JavaScript libraries in wide use across the Internet.

Below, I discuss my current research that focuses on the client-side of web applications. I then
outline future research directions, which extend the scope of my research to tackle problems that cross
the client/server boundary.

Conventional Programming Language Support in the Browser

Can we bring conventional languages to the browser? The client-side of web applications must currently
be written in JavaScript because that is the only programming language available in the browser. A few
projects attempt to bring conventional languages like C/C++, Java, and Python to the browser on top of
JavaScript. Ultimately, these efforts fall short because simply translating existing code into JavaScript
is not enough.

The browser lacks practically all of the environment that code written in conventional languages
expect, including processes, threads, a file system, and sockets. In short, directly implementing these
resources on top of browser APIs is not generally possible because of an impedance mismatch between
conventional languages and the browser. Browsers are not designed to support these resources. Devel-
opers must significantly rework or reimplement their code to cope with the limitations of the browser.

I led the design and development of Doppio [4] and Browsix [8], which combine to bridge the gap
between conventional languages and the browser. These systems make it possible to run unmod-
ified code written in conventional languages in the browser. Both of these systems are written
completely in JavaScript. Doppio emulates POSIX-like resources including multiple threads, an exten-
sible file system, and TCP sockets. Doppio’s threads emulate preemptive multithreading on top of the
browser’s cooperative tasks, enabling code running with Doppio to issue blocking requests to its POSIX
resources that interact with non-blocking browser APIs. Browsix extends Doppio with a kernel that
provides centralized Unix-like resources, letting multi-process systems run in the browser.

1 / 5



John Vilk Research Statement

Language implementations that target the browser can now use Doppio and Browsix to implement
standard library and language features that require operating system support, enhancing their com-
patibility with existing code. I used Doppio to build DoppioJVM, a complete JVM implementation
that runs unmodified JVM programs and languages completely in the browser. DoppioJVM powers a
Java compiler and interactive games at CodeMoo.com from the University of Illinois, which teaches
students how to code in Java. The Internet Archive uses Doppio to run historical software, including
Windows 3.1 and the Oregon Trail, in the browser, which has already had over 31 million visitors. A
Browsix-enhanced C/C++ to JavaScript compiler made it possible to bring a complete LATEX development
environment entirely into the browser with usable performance.1 This work has indirectly impacted
the evolution of browsers: Chrome developers explicitly cited the LATEX demo as a reason to push an
experimental browser feature into production.2

Time-Travel Debugging for Web Applications

Can we make web applications easier to debug? Web applications are difficult to debug because they are
plagued with nondeterminism. Network requests can intermittently fail or return unexpected results.
Browser events can race with one another. JavaScript code can race with the browser itself. Traditional
stepping debuggers, which let developers place breakpoints and step forward through an execution,
provide little help to developers trying to debug these issues. If a developer steps too far forward in
the program, they may pass by the problematic line of code and need to restart the debugging process.
Worse, the act of debugging itself can change the program schedule and prevent a bug from occurring
because browser components execute concurrently with JavaScript.

Time-traveling debuggers offer the promise of removing much of this frustration. Using these sys-
tems, a developer only needs to record a problematic execution once; the developer can then freely
time-travel to different points in the execution. Previous time-traveling debuggers for web applications
are unable to support fast or precise time-travel because they treat the browser as a black box [1, 7].
These debuggers do not have access to internal browser state needed to checkpoint web applications
mid-session, and thus are only able to time-travel by replaying from the beginning of a session. Black-
box debuggers also assume that controlling JavaScript nondeterminism is sufficient to replay recorded
executions, but the browser itself contains nondeterminism that these debuggers cannot control.

These problems are intractable if the browser is treated as a black box. However, I observe that the
browser can be modified to expose just enough additional state to support time-travel. With this gray-
box approach in mind, I led the design and development of ReJS [5], the first time-traveling debugger for
web applications that supports precise and efficient time-travel. ReJS enhances a traditional stepping
debugger with time-traveling operations, such as stepping back to the previous line, that would be
infeasible to implement in a black box system. ReJS faithfully and efficiently reproduces browser
nondeterminism, letting developers debug backward and forward in time to isolate a bug’s
root cause. ReJS also supports existing GUI debugging tools during time-travel because it keeps the
browser’s native GUI interfaces live and in sync with JavaScript execution.

ReJS extends the browser with non-intrusive interrogative interfaces that expose previously hidden
runtime information. During an execution, ReJS uses these interfaces to log browser nondeterminism
and take periodic snapshots of the application’s state. ReJS imposes imperceptible tracing overhead,
its application traces are small and portable, and, in the common case, stepping backwards only takes
about a third of a second. Core parts of ReJS have been incorporated into Microsoft’s ChakraCore
JavaScript engine that ships with Windows 10 and form the basis of a new time-traveling debugger.

1Demos available at https://doppiojvm.org/ and http://browsertex.org/
2The feature is SharedArrayBuffer: https://goo.gl/x9bXqX

2 / 5

https://doppiojvm.org/
http://browsertex.org/
https://goo.gl/x9bXqX


John Vilk Research Statement

Automatically Debugging Memory Leaks in Web Applications

Can we reduce the memory consumption of web applications? Browsers have an established reputation
for consuming significant amounts of memory, and memory leaks in web applications only make mat-
ters worse. These leaks occur when the application references unneeded state, preventing the garbage
collector (GC) from collecting it. Leaks degrade responsiveness by increasing GC frequency and over-
head, and can even lead to browser tab crashes by exhausting available memory.

Despite the fact that memory leaks in web applications are a serious and pervasive problem, there
are no automated tools that can find them. Existing leak detection techniques that work for C, C++,
and Java are ineffective in the browser: leaks in web applications are fundamentally different from
leaks in conventional applications. Developers are currently forced to manually inspect heap snap-
shots to locate objects that the application incorrectly retains. Unfortunately, these snapshots do not
necessarily provide actionable information. They simultaneously provide too much information (every
single object on the heap) and not enough information to actually debug these leaks (no connection to
the code responsible for leaks). The result is that even expert developers are unable to find leaks: for
example, a Google developer closed a Google Maps SDK bug report about a memory leak (with 99 stars
and 51 comments) because it was “infeasible” to fix as they were “not really sure in how many places
[it’s] leaking.” 3

I built BLeak [3] (Browser Leak debugger), the first system for automatically debugging memory
leaks in web applications. BLeak leverages the following fact: over a single session, users repeatedly
return to the same visual state. For example, Facebook users repeatedly return to the news feed and
Gmail users repeatedly return to the inbox view. I observe that these round trips can be viewed as
an oracle to identify leaks. Because visits to the same visual state should consume roughly the same
amount of memory, sustained memory growth between visits is a strong indicator of a memory leak.
BLeak builds directly on this observation to find memory leaks in web applications with high precision.

To use BLeak, a developer provides a short script (≈40 lines of code) to drive a web application in
a loop that takes round trips through a specific visual state. BLeak then proceeds automatically,
identifying memory leaks, ranking them by their severity, and reporting their root cause
in the source code. On a corpus of production web applications, BLeak has a medium precision of
100% and precisely identifies the code responsible for nearly all of the leaks it finds (all but one). At
least 77% of these leaks would not have been found by a conventional staleness-based approach. Fixing
these leaks reduces heap growth by 94% on average, saving from 0.5 MB to 8 MB per return trip to the
same visual state. Guided by BLeak, I identified and fixed over 50 memory leaks in popular libraries
and applications including Airbnb, AngularJS, Google Analytics, and Google Maps SDK.

Future Research

My research so far has focused on the browser, but web applications typically consist of both browser and
server components. For example, the Facebook web application consists of a client-side that runs in the
browser and interacts with server-side microservices that power individual features like the news feed
and chat. Correctness and performance bugs can cascade through these components, causing emergent
behavior that is difficult to reason about. In the future, I plan to extend the scope of my research to
tackle problems that cross the client/server boundary. I outline a few specific directions below.

Debugging across the wire

Standard debuggers are limited to examining a single program at a time, but web applications typi-
cally have separate client and server components. Complex bugs can occur when components interact

3https://issuetracker.google.com/issues/35821412

3 / 5

https://issuetracker.google.com/issues/35821412


John Vilk Research Statement

in unintended ways, fail unexpectedly, or make invalid assumptions about other components in the sys-
tem. Developers commonly analyze log files from individual components to reason about whole system
behavior, which is a manual and error-prone process. As a result, bugs involving multiple application
components are challenging to locate and diagnose.

I plan to develop novel debugging techniques to help developers locate and diagnose bugs that cross
the client/server boundary. A debugger that functions across the wire would let developers debug an
entire web application at once and test hypotheses about whole-system behavior. For example, these
debuggers could trace the provenance of specific events in the web application, and lead developers from
problematic client-side behavior to code running on a server (or vice versa). Integrating low-overhead
tracing and time-travel debugging would enable developers to use recorded traces to diagnose bugs in
production systems after incidents occur. Such an approach poses consistency and scaling challenges
that might be intractable in a general purpose distributed system, e.g., for whole-system snapshots,
but can be made tractable in the web application setting by focusing on per-session state.

Performance debugging across the wire

Web application performance is vital because users quickly abandon unresponsive sites out of frus-
tration, which can lead to a loss of revenue [6]. Performance is also a first-class concern in emerging
augmented and virtual reality applications on the web: inconsistent frame rates induce motion sick-
ness which literally makes users physically ill. Developers focus considerable effort on optimizing their
web applications to operate quickly, smoothly, and responsively, but existing profilers do not provide
enough information to guide developers to optimization opportunities.

Causal profiling is a new technique for predicting the effect of optimizing specific parts of a program
on a throughput- or latency-based metric of interest [2]. A causal profiler conducts periodic performance
experiments at runtime to directly measure the impact of a potential optimization. For each experiment,
a causal profiler applies a virtual speedup to a region of code, then measures the impact on performance.
Virtual speedups emulate the effect of a real speedup by delaying concurrently executing tasks, such
as other threads, every time the sped-up code executes.

I have already implemented a prototype causal profiler for the client-side of web applications that
operates on the browser’s event-based concurrency primitives. I plan to extend this work to function
across the client/server boundary. A causal profiler that functions across the wire will quantify im-
provements in client-side metrics like latency or frame rate resulting from server-side optimizations
(and vice versa). Creating such a profiler entails revisiting core causal profiling concepts to function in
a distributed fashion so as to decentralize performance experiments and enable virtual speedup delays
to propagate across components in the system. A causal profiler that functions across the wire would
be able to locate, precisely quantify, and rank optimization opportunities in both the client and server,
letting the developer focus on optimizations that actually matter.

References

[1] B. Burg, R. Bailey, A. J. Ko, and M. D. Ernst. Interactive record/replay for web application de-
bugging. In Proceedings of the 26th Symposium on User Interface Software and Technology, pages
473–484, 2013.

[2] C. Curtsinger and E. D. Berger. Coz: finding code that counts with causal profiling. In Proceedings
of the 25th Symposium on Operating Systems Principles, pages 184–197, 2015.

[3] J. Vilk and E. D. Berger. BLeak: Automatically Debugging Memory Leaks in Web Applications.
In submission to PLDI 2018.

[4] J. Vilk and E. D. Berger. Doppio: Breaking the Browser Language Barrier. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’14, pages 508–518, 2014.

4 / 5



John Vilk Research Statement

[5] J. Vilk, J. Mickens, and M. Marron. A Gray Box Approach For High-Fidelity, High-Speed Time-
Travel Debugging. Technical Report MSR-TR-2016-7, Microsoft Research, June 2016.

[6] S. S. Krishnan and R. K. Sitaraman. Video stream quality impacts viewer behavior: inferring
causality using quasi-experimental designs. In Internet Measurement Conference, 2012.

[7] J. Mickens, J. Elson, and J. Howell. Mugshot: Deterministic capture and replay for Javascript ap-
plications. In Proceedings of the 7th Symposium on Networked Systems Design and Implementation,
pages 159–174, 2010.

[8] B. Powers, J. Vilk, and E. D. Berger. Browsix: Bridging the gap between unix and the browser. In
Proceedings of the Twenty-Second International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS 2017, pages 253–266, 2017.

5 / 5


